login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103217 Hexagonal numbers triangle read by rows: T(n,k)=(n+1-k)*(2*(n+1-k)-1). 0
1, 6, 1, 15, 6, 1, 28, 15, 6, 1, 45, 28, 15, 6, 1, 66, 45, 28, 15, 6, 1, 91, 66, 45, 28, 15, 6, 1, 120, 91, 66, 45, 28, 15, 6, 1, 153, 120, 91, 66, 45, 28, 15, 6, 1, 190, 153, 120, 91, 66, 45, 28, 15, 6, 1, 231, 190, 153, 120, 91, 66, 45, 28, 15, 6, 1, 276, 231, 190, 153, 120, 91, 66 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The triangle is generated by the product A*B = B*A of the infinite lower triangular matrices A =

1 0 0 0...

1 1 0 0...

1 1 1 0...

1 1 1 1...

... and B =

1 0 0 0...

5 1 0 0...

9 5 1 0...

13 9 5 1...

...

The only prime hexagonal pyramidal number is 7. The only semiprime hexagonal pyramidal numbers are: 22, 95, 161. All greater hexagonal pyramidal numbers A002412 have at least 3 prime factors. Note that 7337 = 11 * 23 * 29 is a palindromatic 3-brilliant number and 65941 = 23 * 47 * 61 is 3-brilliant. - Jonathan Vos Post, Jan 26 2005

LINKS

Table of n, a(n) for n=0..72.

Jonathan Vos Post, Table of Polytope Numbers, Sorted, Through 1,000,000.

Eric Weisstein. Hexagonal Number.

Eric Weisstein. Hexagonal Pyramidal Number.

EXAMPLE

Triangle begins:

1,

6,1,

15,6,1,

28,15,6,1,

45,28,15,6,1,

66,45,28,15,6,1,

91,66,45,28,15,6,1,

MATHEMATICA

T[n_, k_] := (n + 1 - k)*(2*(n + 1 - k) - 1); Flatten[ Table[ T[n, k], {n, 0, 10}, {k, 0, n}]] (* Robert G. Wilson v, Feb 10 2005 *)

PROG

(PARI) T(n, k) = (n+1-k)*(2*(n+1-k)-1); for(i=0, 10, for(j=0, i, print1(T(i, j), ", ")); print())

CROSSREFS

Row sums give A002412 (hexagonal pyramidal numbers).

Cf. A000384, A002412.

Sequence in context: A146997 A147483 A050309 * A136273 A125233 A139727

Adjacent sequences:  A103214 A103215 A103216 * A103218 A103219 A103220

KEYWORD

easy,nonn,tabl

AUTHOR

Lambert Klasen (lambert.klasen(AT)gmx.de) and Gary W. Adamson, Jan 25 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 23 21:20 EST 2020. Contains 332195 sequences. (Running on oeis4.)