login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103217
Hexagonal numbers triangle read by rows: T(n,k)=(n+1-k)*(2*(n+1-k)-1).
1
1, 6, 1, 15, 6, 1, 28, 15, 6, 1, 45, 28, 15, 6, 1, 66, 45, 28, 15, 6, 1, 91, 66, 45, 28, 15, 6, 1, 120, 91, 66, 45, 28, 15, 6, 1, 153, 120, 91, 66, 45, 28, 15, 6, 1, 190, 153, 120, 91, 66, 45, 28, 15, 6, 1, 231, 190, 153, 120, 91, 66, 45, 28, 15, 6, 1, 276, 231, 190, 153, 120, 91, 66
OFFSET
0,2
COMMENTS
The triangle is generated by the product A*B = B*A of the infinite lower triangular matrices A =
1 0 0 0...
1 1 0 0...
1 1 1 0...
1 1 1 1...
...
and B =
1 0 0 0...
5 1 0 0...
9 5 1 0...
13 9 5 1...
...
The only prime hexagonal pyramidal number is 7. The only semiprime hexagonal pyramidal numbers are: 22, 95, 161. All greater hexagonal pyramidal numbers A002412 have at least 3 prime factors. Note that 7337 = 11 * 23 * 29 is a palindromic 3-brilliant number and 65941 = 23 * 47 * 61 is 3-brilliant. - Jonathan Vos Post, Jan 26 2005
LINKS
Eric Weisstein's World of Mathematics, Hexagonal Number.
Eric Weisstein's World of Mathematics, Hexagonal Pyramidal Number.
EXAMPLE
Triangle begins:
1,
6,1,
15,6,1,
28,15,6,1,
45,28,15,6,1,
66,45,28,15,6,1,
91,66,45,28,15,6,1,
MATHEMATICA
T[n_, k_] := (n + 1 - k)*(2*(n + 1 - k) - 1); Flatten[ Table[ T[n, k], {n, 0, 10}, {k, 0, n}]] (* Robert G. Wilson v, Feb 10 2005 *)
PROG
(PARI) T(n, k) = (n+1-k)*(2*(n+1-k)-1); for(i=0, 10, for(j=0, i, print1(T(i, j), ", ")); print())
CROSSREFS
Row sums give A002412 (hexagonal pyramidal numbers).
Sequence in context: A146997 A147483 A050309 * A136273 A125233 A139727
KEYWORD
easy,nonn,tabl
AUTHOR
Lambert Klasen (lambert.klasen(AT)gmx.de) and Gary W. Adamson, Jan 25 2005
STATUS
approved