login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103219
Triangle read by rows: T(n,k) = (n+1-k)*(4*(n+1-k)^2 - 1)/3+2*k*(n+1-k)^2.
2
1, 10, 3, 35, 18, 5, 84, 53, 26, 7, 165, 116, 71, 34, 9, 286, 215, 148, 89, 42, 11, 455, 358, 265, 180, 107, 50, 13, 680, 553, 430, 315, 212, 125, 58, 15, 969, 808, 651, 502, 365, 244, 143, 66, 17, 1330, 1131, 936, 749, 574, 415, 276, 161, 74, 19, 1771, 1530, 1293
OFFSET
0,2
COMMENTS
The triangle is generated from the product B * A of the infinite lower triangular matrices A =
1 0 0 0...
3 1 0 0...
5 3 1 0...
7 5 3 1...
...
and B =
1 0 0 0...
1 3 0 0...
1 3 5 0...
1 3 5 7...
...
EXAMPLE
Triangle begins:
1,
10,3,
35,18,5,
84,53,26,7,
165,116,71,34,9,
286,215,148,89,42,11,
MATHEMATICA
T[n_, k_] := (n + 1 - k)*(4*(n + 1 - k)^2 - 1)/3 + 2*k*(n + 1 - k)^2; Flatten[ Table[ T[n, k], {n, 0, 10}, {k, 0, n}]] (* Robert G. Wilson v, Feb 10 2005 *)
PROG
(PARI) T(n, k)=(n+1-k)*(4*(n+1-k)^2-1)/3+2*k*(n+1-k)^2; for(i=0, 10, for(j=0, i, print1(T(i, j), ", ")); print())
CROSSREFS
Row sums give A103220.
T(n, 0) = (n+1)*(4*(n+1)^2 - 1)/3 = A000447(n+1);
T(n+1, n)= 8*n+2 = A017089(n+1);
Cf. A103218 (for product A*B), A103220.
Sequence in context: A079670 A343563 A050100 * A260680 A111126 A165790
KEYWORD
nonn,tabl,easy
AUTHOR
Lambert Klasen (lambert.klasen(AT)gmx.de) and Gary W. Adamson, Jan 26 2005
STATUS
approved