login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103222
Real part of the totient function phi(n) for Gaussian integers. See A103223 for the imaginary part and A103224 for the norm.
6
1, 1, 2, 2, 2, 2, 6, 4, 6, 0, 10, 4, 8, 6, 4, 8, 12, 6, 18, 0, 12, 10, 22, 8, 10, 4, 18, 12, 22, 0, 30, 16, 20, 8, 12, 12, 30, 18, 16, 0, 32, 12, 42, 20, 12, 22, 46, 16, 42, 0, 24, 8, 44, 18, 20, 24, 36, 16, 58, 0, 50, 30, 36, 32, 8, 20, 66, 16, 44, 0, 70, 24, 62, 24, 20, 36, 60, 8, 78, 0
OFFSET
1,3
COMMENTS
This definition of the totient function for Gaussian integers preserves many of the properties of the usual totient function: (1) it is multiplicative: if gcd(z1,z2)=1, then phi(z1*z2)=phi(z1)*phi(z2), (2) phi(z^2)=z*phi(z), (3) z=Sum_{d|z} phi(d) for properly selected divisors d and (4) the congruence z=1 (mod phi(z)) appears to be true only for Gaussian primes. The first negative term occurs for n=130=2*5*13, the product of the first three primes which are not Gaussian primes.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
Eric Weisstein's World of Mathematics, Totient Function
FORMULA
Let a nonzero Gaussian integer z have the factorization u p1^e1...pn^en, where u is a unit (1, i, -1, -i), the pk are Gaussian primes in the first quadrant and the ek positive integers. Then we define phi(z) = u*product_{k=1..n} (pk-1) pk^(ek-1).
MATHEMATICA
phi[z_] := Module[{f, k, prod}, If[Abs[z]==1, z, f=FactorInteger[z, GaussianIntegers->True]; If[Abs[f[[1, 1]]]==1, k=2; prod=f[[1, 1]], k=1; prod=1]; Do[prod=prod*(f[[i, 1]]-1)f[[i, 1]]^(f[[i, 2]]-1), {i, k, Length[f]}]; prod]]; Re[Table[phi[n], {n, 100}]]
CROSSREFS
Sequence in context: A283677 A355192 A260983 * A319100 A304794 A175809
KEYWORD
nice,sign
AUTHOR
T. D. Noe, Jan 26 2005
STATUS
approved