%I #14 Mar 01 2023 05:40:20
%S 1,6,1,15,6,1,28,15,6,1,45,28,15,6,1,66,45,28,15,6,1,91,66,45,28,15,6,
%T 1,120,91,66,45,28,15,6,1,153,120,91,66,45,28,15,6,1,190,153,120,91,
%U 66,45,28,15,6,1,231,190,153,120,91,66,45,28,15,6,1,276,231,190,153,120,91,66
%N Hexagonal numbers triangle read by rows: T(n,k)=(n+1-k)*(2*(n+1-k)-1).
%C The triangle is generated by the product A*B = B*A of the infinite lower triangular matrices A =
%C 1 0 0 0...
%C 1 1 0 0...
%C 1 1 1 0...
%C 1 1 1 1...
%C ...
%C and B =
%C 1 0 0 0...
%C 5 1 0 0...
%C 9 5 1 0...
%C 13 9 5 1...
%C ...
%C The only prime hexagonal pyramidal number is 7. The only semiprime hexagonal pyramidal numbers are: 22, 95, 161. All greater hexagonal pyramidal numbers A002412 have at least 3 prime factors. Note that 7337 = 11 * 23 * 29 is a palindromic 3-brilliant number and 65941 = 23 * 47 * 61 is 3-brilliant. - _Jonathan Vos Post_, Jan 26 2005
%H Jonathan Vos Post, <a href="https://web.archive.org/web/20200219170305/http://www.magicdragon.com:80/poly.html">Table of Polytope Numbers, Sorted, Through 1,000,000</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HexagonalNumber.html">Hexagonal Number</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HexagonalPyramidalNumber.html">Hexagonal Pyramidal Number</a>.
%e Triangle begins:
%e 1,
%e 6,1,
%e 15,6,1,
%e 28,15,6,1,
%e 45,28,15,6,1,
%e 66,45,28,15,6,1,
%e 91,66,45,28,15,6,1,
%t T[n_, k_] := (n + 1 - k)*(2*(n + 1 - k) - 1); Flatten[ Table[ T[n, k], {n, 0, 10}, {k, 0, n}]] (* _Robert G. Wilson v_, Feb 10 2005 *)
%o (PARI) T(n, k) = (n+1-k)*(2*(n+1-k)-1); for(i=0,10, for(j=0,i,print1(T(i,j),",")); print())
%Y Row sums give A002412 (hexagonal pyramidal numbers).
%Y Cf. A000384, A002412.
%K easy,nonn,tabl
%O 0,2
%A Lambert Klasen (lambert.klasen(AT)gmx.de) and _Gary W. Adamson_, Jan 25 2005