login
A248931
Decimal expansion of 2^1279 - 1, the 15th Mersenne prime A000668(15).
19
1, 0, 4, 0, 7, 9, 3, 2, 1, 9, 4, 6, 6, 4, 3, 9, 9, 0, 8, 1, 9, 2, 5, 2, 4, 0, 3, 2, 7, 3, 6, 4, 0, 8, 5, 5, 3, 8, 6, 1, 5, 2, 6, 2, 2, 4, 7, 2, 6, 6, 7, 0, 4, 8, 0, 5, 3, 1, 9, 1, 1, 2, 3, 5, 0, 4, 0, 3, 6, 0, 8, 0, 5, 9, 6, 7, 3, 3, 6, 0, 2, 9, 8, 0, 1, 2, 2, 3, 9, 4, 4, 1, 7, 3, 2, 3, 2, 4, 1, 8, 4, 8, 4, 2, 4
OFFSET
386,3
COMMENTS
The 13th through the 17th Mersenne primes were found in 1952 by Raphael M. Robinson, using SWAC.
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 386..771
D. H. Lehmer, A New Mersenne Prime, Mathematics of Computation, vol. 6, No. 39 (1952), p. 205.
Wikipedia, Mersenne prime
FORMULA
Equals 2^A000043(15) - 1.
EXAMPLE
10407932194664399081925240327364085538615262247266704805319112350403608...
MATHEMATICA
RealDigits[2^1279 - 1, 10, 100][[1]] (* G. C. Greubel, Oct 03 2017 *)
PROG
(Magma) Reverse(Intseq(2^1279-1));
(PARI) eval(Vec(Str(2^1279-1)))
CROSSREFS
Cf. A169684 = A000668(11), A169681 = A000668(12), A169685 = A000668(13), A204063 = A000668(14), A248932 = A000668(16), A248933 = A000668(17), A248934 = A000668(18), A248935 = A000668(19), A248936 = A000668(20).
Sequence in context: A298617 A221596 A195286 * A200501 A141433 A019111
KEYWORD
nonn,cons,easy,fini,full
AUTHOR
STATUS
approved