login
A248934
Decimal expansion of 2^3217 - 1, the 18th Mersenne prime A000668(18).
19
2, 5, 9, 1, 1, 7, 0, 8, 6, 0, 1, 3, 2, 0, 2, 6, 2, 7, 7, 7, 6, 2, 4, 6, 7, 6, 7, 9, 2, 2, 4, 4, 1, 5, 3, 0, 9, 4, 1, 8, 1, 8, 8, 8, 7, 5, 5, 3, 1, 2, 5, 4, 2, 7, 3, 0, 3, 9, 7, 4, 9, 2, 3, 1, 6, 1, 8, 7, 4, 0, 1, 9, 2, 6, 6, 5, 8, 6, 3, 6, 2, 0, 8, 6, 2, 0, 1, 2, 0, 9, 5, 1, 6, 8, 0, 0, 4, 8, 3, 4, 0, 6, 5, 5, 0
OFFSET
969,1
COMMENTS
The prime was found on September 8, 1957, by Hans Riesel, using BESK.
LINKS
Hans Riesel, A New Mersenne Prime, Mathematics of Computation, vol. 12 (1958), p. 60.
Wikipedia, Mersenne prime
FORMULA
Equals 2^A000043(18) - 1.
EXAMPLE
25911708601320262777624676792244153094181888755312542730397492316187401...
MATHEMATICA
RealDigits[2^3217 - 1, 10, 100][[1]] (* G. C. Greubel, Oct 03 2017 *)
PROG
(Magma) Reverse(Intseq(2^3217-1));
(PARI) eval(Vec(Str(2^3217-1)))
CROSSREFS
Cf. A169684 = A000668(11), A169681 = A000668(12), A169685 = A000668(13), A204063 = A000668(14), A248931 = A000668(15), A248932 = A000668(16), A248933 = A000668(17), A248935 = A000668(19), A248936 = A000668(20).
Sequence in context: A021390 A201934 A019802 * A011432 A347345 A324835
KEYWORD
nonn,cons,easy,fini,full
AUTHOR
STATUS
approved