|
|
A248928
|
|
Interleave (2*n+2)^2 with (2*n+3)^2, both listed n+1 times.
|
|
1
|
|
|
4, 9, 16, 16, 25, 25, 36, 36, 36, 49, 49, 49, 64, 64, 64, 64, 81, 81, 81, 81, 100, 100, 100, 100, 100, 121, 121, 121, 121, 121, 144, 144, 144, 144, 144, 144, 169, 169, 169, 169, 169, 169, 196, 196, 196, 196, 196, 196, 196, 225, 225, 225, 225, 225, 225, 225
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Discovered via Janet's sequence A167268: the result of adding to A167268 the smallest increasing sequence (2, 7, 10, 14, 19, 23, 26, 30, 34, 39, 43, 47, ...) as to get a sequence of nondecreasing squares.
Even terms: 4, 16, 16, 36, 36, 36, ... = 4*A093995(n+1).
Odd terms: (A131507(n) + 2)^2.
|
|
LINKS
|
Harvey P. Dale, Table of n, a(n) for n = 0..1000
|
|
FORMULA
|
a(n) = A027434(n+1)^2.
|
|
EXAMPLE
|
Seen as an irregular triangle:
4;
9;
16, 16;
25, 25;
36, 36, 36;
49, 49, 49;
64, 64, 64, 64;
81, 81, 81, 81;
...
|
|
MATHEMATICA
|
Module[{nn=10, a, b}, a=Table[PadRight[{}, n+1, (2n+2)^2], {n, 0, nn}]; b= Table[ PadRight[ {}, n+1, (2n+3)^2], {n, 0, nn}]; Riffle[a, b]]//Flatten (* Harvey P. Dale, Jun 10 2022 *)
|
|
PROG
|
(PARI) vector(60, n, (sqrtint(4*n-3)+1)^2) \\ after Charles R Greathouse IV, Michel Marcus, Oct 27 2014
|
|
CROSSREFS
|
Cf. A000267, A007395, A027434, A093995, A131507, A167268.
Sequence in context: A313306 A313307 A313308 * A080819 A313309 A313310
Adjacent sequences: A248925 A248926 A248927 * A248929 A248930 A248931
|
|
KEYWORD
|
nonn,tabf
|
|
AUTHOR
|
Paul Curtz, Oct 17 2014
|
|
STATUS
|
approved
|
|
|
|