login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262871
Sum of the squarefree numbers appearing among the smaller parts of the partitions of n into two parts.
7
0, 1, 1, 3, 3, 6, 6, 6, 6, 11, 11, 17, 17, 24, 24, 24, 24, 24, 24, 34, 34, 45, 45, 45, 45, 58, 58, 72, 72, 87, 87, 87, 87, 104, 104, 104, 104, 123, 123, 123, 123, 144, 144, 166, 166, 189, 189, 189, 189, 189, 189, 215, 215, 215, 215, 215, 215, 244, 244, 274
OFFSET
1,4
FORMULA
a(n) = Sum_{i=1..floor(n/2)} i * mu(i)^2, where mu is the Möebius function (A008683).
a(n) = A262992(n) - A262870(n).
EXAMPLE
a(5)=3; there are two partitions of 5 into two parts: (4,1) and (3,2). The sum of the smaller squarefree parts is 1+2=3. Thus a(5)=3.
a(6)=6; there are three partitions of 6 into two parts: (5,1), (4,2) and (3,3). All of the smaller parts are squarefree, so a(6) = 1+2+3 = 6.
MAPLE
with(numtheory): A262871:=n->add(i*mobius(i)^2, i=1..floor(n/2)): seq(A262871(n), n=1..100);
MATHEMATICA
Table[Sum[i*MoebiusMu[i]^2, {i, Floor[n/2]}], {n, 70}]
PROG
(PARI) a(n) = sum(i=1, n\2, i * moebius(i)^2); \\ Michel Marcus, Oct 04 2015
(PARI) a(n)=my(s); forsquarefree(k=1, n\2, s += k[1]); s \\ Charles R Greathouse IV, Jan 08 2018
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Oct 03 2015
STATUS
approved