login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262991
Number of squarefree numbers among the parts of the partitions of n into two parts.
7
0, 2, 2, 4, 3, 5, 5, 6, 6, 7, 7, 9, 8, 10, 10, 11, 11, 12, 12, 14, 13, 15, 15, 16, 16, 17, 17, 18, 17, 19, 19, 20, 20, 22, 22, 23, 23, 25, 25, 26, 26, 28, 28, 30, 29, 30, 30, 31, 31, 31, 31, 33, 32, 33, 33, 34, 34, 36, 36, 38, 37, 39, 39, 39, 39, 41, 41, 43
OFFSET
1,2
FORMULA
a(n) = Sum_{i=1..floor(n/2)} mu(i)^2 + mu(n-i)^2, where mu is the Möebius function (A008683).
a(n) = A262868(n) + A262869(n).
EXAMPLE
a(5)=3; there are 2 partitions of 5 into two parts: (4,1) and (3,2). Three of the parts in the partitions are squarefree, so a(5)=3.
a(6)=5; there are 3 partitions of 6 into two parts: (5,1), (4,2) and (3,3). Five of the parts in the partitions are squarefree, so a(6)=5.
MAPLE
with(numtheory): A262991:=n->add(mobius(i)^2+mobius(n-i)^2, i=1..floor(n/2)): seq(A262991(n), n=1..100);
MATHEMATICA
Table[Sum[MoebiusMu[i]^2 + MoebiusMu[n - i]^2, {i, Floor[n/2]}], {n, 100}]
Table[Count[Flatten[IntegerPartitions[n, {2}]], _?SquareFreeQ], {n, 70}] (* Harvey P. Dale, Aug 18 2021 *)
PROG
(PARI) vector(100, n, sum(k=1, n\2, moebius(k)^2 + moebius(n-k)^2)) \\ Altug Alkan, Oct 07 2015
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Oct 06 2015
STATUS
approved