login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A225381 Elimination order of the first person in a Josephus problem. 3
1, 2, 2, 4, 3, 5, 4, 8, 5, 8, 6, 11, 7, 11, 8, 16, 9, 14, 10, 18, 11, 17, 12, 23, 13, 20, 14, 25, 15, 23, 16, 32, 17, 26, 18, 32, 19, 29, 20, 38, 21, 32, 22, 39, 23, 35, 24, 47, 25, 38, 26, 46, 27, 41, 28, 53, 29, 44, 30, 53, 31, 47, 32, 64, 33, 50, 34, 60, 35 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
In a Josephus problem such as A006257, a(n) is the order in which the person originally first in line is eliminated.
The number of remaining survivors after the person originally first in line has been eliminated, i.e., n-a(n), gives the fractal sequence A025480.
For the linear version, see A225489.
LINKS
Cristina Ballantine and Mircea Merca, Plane Partitions and Divisors, Symmetry (2024), Vol. 16, Iss. 5. See page 9.
Mircea Merca, Plane Partitions and a Problem of Josephus, Mathematics (2023), Vol. 11, Iss. 4996. See page 2.
FORMULA
a(n) = (n+1)/2 (odd n); a(n) = a(n/2) + n/2 (even n).
a(n) = n - A025480(n).
G.f.: Sum{n>=1} x^n/(1-x^A006519(n)). - Nicolas Nagel, Mar 19 2018
EXAMPLE
If there are 7 persons to begin with, they are eliminated in the following order: 2,4,6,1,5,3,7. So the first person (the person originally first in line) is eliminated as number 4. Therefore a(7) = 4.
MATHEMATICA
t = {1}; Do[AppendTo[t, If[OddQ[n], (n + 1)/2, t[[n/2]] + n/2]], {n, 2, 100}]; t (* T. D. Noe, May 17 2013 *)
CROSSREFS
Sequence in context: A204900 A070803 A071693 * A007728 A262991 A077026
KEYWORD
nonn
AUTHOR
Marcus Hedbring, May 17 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 20:08 EDT 2024. Contains 371963 sequences. (Running on oeis4.)