OFFSET
0,3
COMMENTS
a(n) >= floor(n / 2) + 1 = A008619(n). If x = 0 then n = x*y*z+x+y+z = y + z which has floor(n / 2) + 1 solutions. - David A. Corneth, Jul 31 2015
See A260803 for the case where 1 <= x <= y <= z. - M. F. Hasler, Jul 31 2015
LINKS
David A. Corneth, Table of n, a(n) for n = 0..9999 (first 1001 terms from Robert G. Wilson v)
MATHEMATICA
mx = 100; t = 0*Range@ mx; Do[n = x*y*z + x + y + z; If[n < mx, t[[n + 1]]++], {x, 0, mx}, {y, x, mx}, {z, y, mx}]; t (* Robert G. Wilson v, Jul 31 2015 *)
PROG
(PARI) for(n=0, 74, print1(sum(a=0, n, sum(b=0, a, sum(c=0, b, a*b*c+a+b+c==n)))", ")) \\ Zak Seidov, Jul 31 2015
(PARI) A071693(n)=sum(x=0, n\3, sum(y=x, (n-x*(1+x^2))\2, (n-x-y)%(x*y+1)==0&&n-x>=(x*y+2)*y)) \\ M. F. Hasler, Jul 31 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Jun 23 2002
EXTENSIONS
a(0) = 1 prepended by David A. Corneth, Jul 30 2015
STATUS
approved