login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to write n as n = x*y*z + x + y + z where 0 <= x <= y <= z <= n.
2

%I #33 Jan 03 2022 07:19:40

%S 1,1,2,2,4,3,5,4,6,6,7,6,9,7,10,9,11,9,12,11,13,12,13,12,17,14,16,15,

%T 17,16,19,16,19,19,20,19,24,19,21,22,25,21,26,22,26,25,26,25,29,27,28,

%U 28,29,27,33,29,33,30,31,32,37,32,34,34,37,34,38,34,38,38,39,36,43,38,40

%N Number of ways to write n as n = x*y*z + x + y + z where 0 <= x <= y <= z <= n.

%C a(n) >= floor(n / 2) + 1 = A008619(n). If x = 0 then n = x*y*z+x+y+z = y + z which has floor(n / 2) + 1 solutions. - _David A. Corneth_, Jul 31 2015

%C See A260803 for the case where 1 <= x <= y <= z. - _M. F. Hasler_, Jul 31 2015

%H David A. Corneth, <a href="/A071693/b071693.txt">Table of n, a(n) for n = 0..9999</a> (first 1001 terms from Robert G. Wilson v)

%t mx = 100; t = 0*Range@ mx; Do[n = x*y*z + x + y + z; If[n < mx, t[[n + 1]]++], {x, 0, mx}, {y, x, mx}, {z, y, mx}]; t (* _Robert G. Wilson v_, Jul 31 2015 *)

%o (PARI) for(n=0,74,print1(sum(a=0,n,sum(b=0,a,sum(c=0,b,a*b*c+a+b+c==n)))",")) \\ _Zak Seidov_, Jul 31 2015

%o (PARI) A071693(n)=sum(x=0,n\3,sum(y=x,(n-x*(1+x^2))\2,(n-x-y)%(x*y+1)==0&&n-x>=(x*y+2)*y)) \\ _M. F. Hasler_, Jul 31 2015

%K easy,nonn

%O 0,3

%A _Benoit Cloitre_, Jun 23 2002

%E a(0) = 1 prepended by _David A. Corneth_, Jul 30 2015