login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118410
G.f. A(x) = Sum_{n>=0} a(n)*x^n/2^(n*(n-1)/2) satisfies: A(x) = Sum_{n>=0} A(x)^n*x^n/2^(n*(n-1)/2).
1
1, 1, 3, 21, 321, 10385, 699073, 96908737, 27478721537, 15863659383041, 18583701166494721, 44066148876930001921, 211105432749968736673793, 2040201553888722742048509953, 39729701298130761785818052935681
OFFSET
0,3
FORMULA
G.f.: A(x) = (1/x)*series_reversion[x/Sum_{n>=0} x^n/2^(n*(n-1)/2)].
EXAMPLE
A(x) = 1 + x + 3*x^2/2 + 21*x^3/8 + 321*x^4/64 + 10385*x^5/1024 +...
A(x) = 1 + x*A(x) + x^2*A(x)^2/2 + x^3*A(x)^3/8 +...
PROG
(PARI) {a(n)=2^(n*(n-1)/2)*polcoeff(1/x*serreverse(x/sum(k=0, n, x^k/2^(k*(k-1)/2)+x*O(x^n))), n)}
CROSSREFS
Cf. A117401.
Sequence in context: A341471 A134528 A332974 * A125054 A113085 A240936
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 27 2006
STATUS
approved