login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A113079 Number of tournament sequences: a(n) gives the number of n-th generation descendents of a node labeled (5) in the tree of tournament sequences. 11
1, 5, 40, 515, 10810, 376175, 22099885, 2231417165, 393643922005, 123097221805100, 69087264010363930, 70321483026073531730, 130954011392485408662370, 449450774746306949114288795 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Equals column 5 of square table A093729. Also equals column 0 of the matrix 5th power of triangle A097710, which satisfies the matrix recurrence: A097710(n,k) = [A097710^2](n-1,k-1) + [A097710^2](n-1,k) for n>k>=0.

LINKS

Table of n, a(n) for n=0..13.

M. Cook and M. Kleber, Tournament sequences and Meeussen sequences, Electronic J. Comb. 7 (2000), #R44.

EXAMPLE

The tree of tournament sequences of descendents of a node labeled (5) begins:

[5]; generation 1: 5->[6,7,8,9,10]; generation 2:

6->[7,8,9,10,11,12], 7->[8,9,10,11,12,13,14],

8->[9,10,11,12,13,14,15,16], 9->[10,11,12,13,14,15,16,17,18],

10->[11,12,13,14,15,16,17,18,19,20]; ...

Then a(n) gives the number of nodes in generation n.

Also, a(n+1) = sum of labels of nodes in generation n.

PROG

(PARI) {a(n, q=2)=local(M=matrix(n+1, n+1)); for(r=1, n+1, for(c=1, r, M[r, c]=if(r==c, 1, if(c>1, (M^q)[r-1, c-1])+(M^q)[r-1, c]))); return((M^5)[n+1, 1])}

CROSSREFS

Cf. A113077, A113078, A008934, A113089, A113096, A113098, A113100, A113107, A113109, A113111, A113113.

Sequence in context: A198247 A088695 A145166 * A211046 A138427 A277405

Adjacent sequences: A113076 A113077 A113078 * A113080 A113081 A113082

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Oct 14 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 30 02:26 EST 2023. Contains 359939 sequences. (Running on oeis4.)