login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


A113084
Triangle T, read by rows, that satisfies the recurrence: T(n,k) = [T^3](n-1,k-1) + [T^3](n-1,k) for n>k>=0, with T(n,n)=1 for n>=0, where T^3 is the matrix third power of T.
11
1, 1, 1, 3, 4, 1, 21, 33, 13, 1, 331, 586, 294, 40, 1, 11973, 23299, 13768, 2562, 121, 1, 1030091, 2166800, 1447573, 333070, 22569, 364, 1, 218626341, 490872957, 361327779, 97348117, 8466793, 200931, 1093, 1, 118038692523, 280082001078
OFFSET
0,4
COMMENTS
Column 0 of the matrix power p, T^p, equals the number of 3-tournament sequences having initial term p.
FORMULA
Let GF[T] denote the g.f. of triangular matrix T. Then GF[T] = 1 + x*(1+y)*GF[T^3] and for all integer p>=1: GF[T^p] = 1 + x*Sum_{j=1..p} GF[T^(p+2*j)] + x*y*GF[T^(3*p)].
EXAMPLE
Triangle T begins:
1;
1,1;
3,4,1;
21,33,13,1;
331,586,294,40,1;
11973,23299,13768,2562,121,1;
1030091,2166800,1447573,333070,22569,364,1; ...
Matrix square T^2 (A113088) begins:
1;
2,1;
10,8,1;
114,118,26,1;
2970,3668,1108,80,1;
182402,257122,96416,9964,242,1; ...
where column 0 equals A113089.
Matrix cube T^3 (A113090) begins:
1;
3,1;
21,12,1;
331,255,39,1;
11973,11326,2442,120,1;
1030091,1136709,310864,22206,363,1; ...
where adjacent sums in row n of T^3 forms row n+1 of T.
PROG
(PARI) {T(n, k)=local(M=matrix(n+1, n+1)); for(r=1, n+1, for(c=1, r, M[r, c]=if(r==c, 1, if(c>1, (M^3)[r-1, c-1])+(M^3)[r-1, c]))); return(M[n+1, k+1])}
CROSSREFS
Cf. A113081; A097710, A113095, A113106; A113085 (column 0), A113088 (T^2), A113087 (row sums).
Sequence in context: A215241 A055133 A342186 * A361540 A354293 A255905
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Oct 14 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 23:07 EDT 2024. Contains 376015 sequences. (Running on oeis4.)