login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113103
Square table T, read by antidiagonals, where T(n,k) gives the number of n-th generation descendents of a node labeled (k) in the tree of 5-tournament sequences.
8
1, 0, 1, 0, 1, 1, 0, 5, 2, 1, 0, 85, 16, 3, 1, 0, 4985, 440, 33, 4, 1, 0, 1082905, 43600, 1251, 56, 5, 1, 0, 930005021, 16698560, 173505, 2704, 85, 6, 1, 0, 3306859233805, 26098464448, 94216515, 481376, 4985, 120, 7, 1, 0, 50220281721033905
OFFSET
0,8
COMMENTS
A 5-tournament sequence is an increasing sequence of positive integers (t_1,t_2,...) such that t_1 = p, t_i = p (mod 4) and t_{i+1} <= 5*t_i, where p>=1. This is the table of 5-tournament sequences when the starting node has label p = k for column k>=1.
LINKS
M. Cook and M. Kleber, Tournament sequences and Meeussen sequences, Electronic J. Comb. 7 (2000), #R44.
FORMULA
For n>=k>0: T(n, k) = Sum_{j=1..k} T(n-1, k+4*j); else for k>n>0: T(n, k) = Sum_{j=1..n+1}(-1)^(j-1)*C(n+1, j)*T(n, k-j); with T(0, k)=1 for k>=0. Column k of T equals column 0 of the matrix k-th power of triangle A113106, which satisfies the matrix recurrence: A113106(n, k) = [A113106^5](n-1, k-1) + [A113106^5](n-1, k) for n>k>=0.
EXAMPLE
Table begins:
1,1,1,1,1,1,1,1,1,1,1,1,1,...
0,1,2,3,4,5,6,7,8,9,10,11,...
0,5,16,33,56,85,120,161,208,261,320,...
0,85,440,1251,2704,4985,8280,12775,18656,26109,...
0,4985,43600,173505,481376,1082905,2122800,3774785,6241600,...
0,1082905,16698560,94216515,337587520,930005021,2156566656,...
0,930005021,26098464448,210576669921,978162377600,...
0,3306859233805,172513149018752,2002383115518243,...
0,50220281721033905,4938593053649344000,82856383278525698433,...
PROG
(PARI) /* Generalized Cook-Kleber Recurrence */
{T(n, k, q=5)=if(n==0, 1, if(n<0||k<=0, 0, if(n==1, k, if(n>=k, sum(j=1, k, T(n-1, k+(q-1)*j)), sum(j=1, n+1, (-1)^(j-1)*binomial(n+1, j)*T(n, k-j))))))}
for(n=0, 10, for(k=0, 10, print1(T(n, k), ", ")); print(""))
(PARI) /* Matrix Power Recurrence (Paul D. Hanna) */
{T(n, k, q=5)=local(M=matrix(n+1, n+1)); for(r=1, n+1, for(c=1, r, M[r, c]=if(r==c, 1, if(c>1, (M^q)[r-1, c-1])+(M^q)[r-1, c]))); (M^k)[n+1, 1]}
for(n=0, 10, for(k=0, 10, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A113106, A113107 (column 1), A113109 (column 2), A113111 (column 3), A113113 (column 4); Tables: A093729 (2-tournaments), A113081 (3-tournaments), A113092 (4-tournaments).
Sequence in context: A367184 A370915 A326327 * A033325 A126690 A338945
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Oct 14 2005
STATUS
approved