OFFSET
1,12
COMMENTS
Let U(n) and V(n) be the number of terms in the Lucas representations and Zeckendorf (Fibonacci) representations, respectively, of all the numbers 1,2,...,n. Then a(n) = V(n) - U(n). Conjecture: a(n) >= 0 for all n, and a(n) = 0 for infinitely many n.
LINKS
Clark Kimberling, Table of n, a(n) for n = 1..10000
Clark Kimberling, Lucas Representations of Positive Integers, J. Int. Seq., Vol. 23 (2020), Article 20.9.5.
MATHEMATICA
z = 200;
s = Reverse[Sort[Table[LucasL[n - 1], {n, 1, 70}]]];
t1 = Map[Length[Select[Reap[FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, #, s]][[2, 1]], # > 0 &]] &, Range[z]];
u[n_] := Sum[t1[[k]], {k, 1, n}]
u1 = Table[u[n], {n, 1, z}] (* A214977 *)
s = Reverse[Table[Fibonacci[n + 1], {n, 1, 70}]];
t2 = Map[Length[Select[Reap[FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, #, s]][[2, 1]], # > 0 &]] &, Range[z]];
v[n_] := Sum[t2[[k]], {k, 1, n}]
v1 = Table[v[n], {n, 1, z}] (* A179180 *)
w=v1-u1 (* A214979 *)
Flatten[Position[w, 0]] (* A214980 *)
(* Peter J. C. Moses, Oct 18 2012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Oct 22 2012
STATUS
approved