login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214979
5
0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 2, 1, 1, 1, 0, 0, 1, 2, 3, 2, 2, 1, 0, 1, 0, 0, 0, 1, 2, 3, 4, 6, 4, 3, 3, 2, 2, 1, 2, 2, 1, 1, 1, 0, 0, 1, 2, 3, 4, 6, 6, 7, 9, 7, 6, 5, 5, 5, 4, 4, 4, 2, 1, 2, 2, 3, 2, 2, 1, 0, 1, 0, 0, 0, 1, 2, 3, 4, 6, 6, 7, 9, 9, 10, 11, 13, 15, 13, 12, 11, 9, 8, 8, 8, 8
OFFSET
1,12
COMMENTS
Let U(n) and V(n) be the number of terms in the Lucas representations and Zeckendorf (Fibonacci) representations, respectively, of all the numbers 1,2,...,n. Then a(n) = V(n) - U(n). Conjecture: a(n) >= 0 for all n, and a(n) = 0 for infinitely many n.
LINKS
Clark Kimberling, Lucas Representations of Positive Integers, J. Int. Seq., Vol. 23 (2020), Article 20.9.5.
EXAMPLE
(See A214977 and A179180.)
MATHEMATICA
z = 200;
s = Reverse[Sort[Table[LucasL[n - 1], {n, 1, 70}]]];
t1 = Map[Length[Select[Reap[FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, #, s]][[2, 1]], # > 0 &]] &, Range[z]];
u[n_] := Sum[t1[[k]], {k, 1, n}]
u1 = Table[u[n], {n, 1, z}] (* A214977 *)
s = Reverse[Table[Fibonacci[n + 1], {n, 1, 70}]];
t2 = Map[Length[Select[Reap[FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, #, s]][[2, 1]], # > 0 &]] &, Range[z]];
v[n_] := Sum[t2[[k]], {k, 1, n}]
v1 = Table[v[n], {n, 1, z}] (* A179180 *)
w=v1-u1 (* A214979 *)
Flatten[Position[w, 0]] (* A214980 *)
(* Peter J. C. Moses, Oct 18 2012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Oct 22 2012
STATUS
approved