login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370946
Number of partitions of [n] whose non-singleton elements sum to n.
2
1, 0, 0, 1, 1, 2, 3, 4, 5, 7, 12, 14, 20, 26, 36, 54, 68, 90, 120, 157, 202, 296, 360, 480, 612, 803, 1006, 1317, 1764, 2198, 2821, 3592, 4552, 5754, 7269, 9074, 11990, 14646, 18586, 23112, 29208, 35972, 45277, 55584, 69350, 87881, 107609, 133068, 165038
OFFSET
0,6
LINKS
FORMULA
a(n) = A370945(n,n*(n-1)/2).
EXAMPLE
a(0) = 1: the empty partition.
a(3) = 1: 12|3.
a(4) = 1: 13|2|4.
a(5) = 2: 1|23|4|5, 14|2|3|5.
a(6) = 3: 123|4|5|6, 1|24|3|5|6, 15|2|3|4|6.
a(7) = 4: 124|3|5|6|7, 1|2|34|5|6|7, 1|25|3|4|6|7, 16|2|3|4|5|7.
a(8) = 5: 125|3|4|6|7|8, 134|2|5|6|7|8, 1|2|35|4|6|7|8, 1|26|3|4|5|7|8, 17|2|3|4|5|6|8.
a(9) = 7: 126|3|4|5|7|8|9, 135|2|4|6|7|8|9, 1|234|5|6|7|8|9, 1|2|3|45|6|7|8|9, 1|2|36|4|5|7|8|9, 1|27|3|4|5|6|8|9, 18|2|3|4|5|6|7|9.
a(10) = 12: 1234|5|6|7|8|9|10, 12|34|5|6|7|8|9|10, 127|3|4|5|6|8|9|10, 13|24|5|6|7|8|9|10, 136|2|4|5|7|8|9|10, 14|23|5|6|7|8|9|10, 1|235|4|6|7|8|9|10, 145|2|3|6|7|8|9|10, 1|2|3|46|5|7|8|9|10, 1|2|37|4|5|6|8|9|10, 1|28|3|4|5|6|7|9|10, 19|2|3|4|5|6|7|8|10.
MAPLE
h:= proc(n) option remember; `if`(n=0, 1,
add(h(n-j)*binomial(n-1, j-1), j=2..n))
end:
b:= proc(n, i, m) option remember; `if`(n>i*(i+1)/2, 0,
`if`(n=0, h(m), b(n, i-1, m)+b(n-i, min(n-i, i-1), m+1)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..48);
MATHEMATICA
h[n_] := h[n] = If[n == 0, 1, Sum[h[n-j]*Binomial[n-1, j-1], {j, 2, n}]];
b[n_, i_, m_] := b[n, i, m] = If[n > i*(i + 1)/2, 0, If[n == 0, h[m], b[n, i - 1, m] + b[n - i, Min[n - i, i - 1], m + 1]]];
a[n_] := b[n, n, 0];
Table[a[n], {n, 0, 48}] (* Jean-François Alcover, Mar 08 2024, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A324989 A015856 A174165 * A240732 A060437 A133428
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 06 2024
STATUS
approved