OFFSET
1,2
COMMENTS
The sequence of Apéry numbers A005259 forms the main diagonal of A143007, i.e., A005259(n) = A143007(n, n). The Apéry numbers satisfy the supercongruences A005259(n*p^r) == A005259(n^p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and positive integers n and r. We conjecture that the present sequence satisfies the same supercongruences.
FORMULA
a(n) = Sum_{k = 0..n-1} binomial(2*n-1, k)^2 * binomial(3*n-2-k, 2*n-1)^2.
a(n) = hypergeom([2*n, 1 - 2*n, n, 1 - n], [1, 1, 1], 1).
P-recursive: 2*(n-1)^3*(2*n-1)^3*(440*n^3-2178*n^2+3600*n-1987)*a(n) = (865920*n^9 - 9481824*n^8 + 45492136*n^7 - 125359294*n^6 + 218361816*n^5 - 249018285*n^4 + 185709390*n^3 - 87271191*n^2 + 23447876*n - 2745998)*a(n-1) - 2*(2*n-3)^3*(n-2)^3*(440*n^3-858*n^2+564*n-125)*a(n-2) with a(1) = 1 and a(2) = 25.
a(n) ~ phi^(10*n - 4) / (2^(5/2) * 5^(1/4) * (Pi*n)^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Jul 16 2023
MAPLE
seq( add(binomial(2*n-1, k)^2 * binomial(3*n-2-k, 2*n-1)^2, k = 0..n-1), n = 1..20);
# alternative program
seq(simplify(hypergeom([2*n, 1 - 2*n, n, 1 - n], [1, 1, 1], 1)), n = 1..20);
MATHEMATICA
Table[HypergeometricPFQ[{2*n, 1 - 2*n, n, 1 - n}, {1, 1, 1}, 1], {n, 1, 20}] (* Vaclav Kotesovec, Jul 16 2023 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Jul 16 2023
EXTENSIONS
Offset changed by Georg Fischer, Nov 03 2023
STATUS
approved