login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363864
a(n) = A143007(2*n,n).
8
1, 13, 661, 46705, 3833941, 342981013, 32443313449, 3191377294153, 323158664855125, 33461619685494025, 3526747995762849661, 377103695616260979313, 40807220545026078297961, 4460530114068960956304865, 491780450707942086338993761, 54624008737670717933342875705
OFFSET
0,2
COMMENTS
a(n) = A(2*n,n,2*n,n) in the notation of Straub, equation 8. It follows from Straub, Theorem 1.2, that the supercongruence a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) holds for all primes p >= 5 and all positive integers n and k.
More generally, for positive integers r and s the sequence {A143007(r*n, s*n) : n >= 0} satisfies the same supercongruences. For cases, see A005259(r = s = 1), A363865 (r = 3, s = 1) and A363866 (r = 3, s = 2).
LINKS
Armin Straub, Multivariate Apéry numbers and supercongruences of rational functions, Algebra & Number Theory, Vol. 8, No. 8 (2014), pp. 1985-2008; arXiv preprint, arXiv:1401.0854 [math.NT], 2014.
FORMULA
a(n) = Sum_{k = 0..n} binomial(2*n,n-k)^2*binomial(2*n+k,k)^2.
a(n) = Sum_{k = 0..n} binomial(2*n+k,2*k)*binomial(2*k,k)^2*binomial(n+k,2*k).
a(n) = hypergeom([2*n+1, -2*n, n+1, -n], [1, 1, 1], 1)
a(n) = [x^n] 1/(1 - x)*( Legendre_P(2*n,(1 + x)/(1 - x)) )^2 = [x^(2*n)] 1/(1 - x)*( Legendre_P(n,(1 + x)/(1 - x)) )^2.
P-recursive: 2*(440*n^3 - 1782*n^2 + 2412*n - 1091)*(2*n - 1)^3*n^3*a(n) = (865920*n^9 - 6104736*n^8 + 18475432*n^7 - 31464562*n^6 + 33227280*n^5 - 22586875*n^4 + 9902182*n^3 - 2707173*n^2 + 420336*n - 28350)*a(n-1) - 2*(440*n^3 - 462*n^2 + 168*n - 21)*(n - 1)^3*(2*n - 3)^3*a(n-2) with a(0) = 1 and a(1) = 13.
a(n) = Sum_{k = 0..2*n} (-1)^k*binomial(2*n, k)*binomial(2*n+k, k)*A108625(n, k) (verified using the MulZeil procedure in Doron Zeilberger's MultiZeilberger package). - Peter Bala, Oct 16 2024
MAPLE
A143007 := proc(n, k); add(binomial(n+j, 2*j)*binomial(2*j, j)^2*binomial(k+j, 2*j), j = 0..n) end:
seq(A143007(2*n, n), n = 0..20);
# alternative program
seq(simplify(hypergeom([2*n+1, -2*n, n+1, -n], [1, 1, 1], 1)), n = 0..20);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Jun 25 2023
STATUS
approved