login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} C(2*k, k)^2 * C(n+k, n-k).
7

%I #47 Sep 08 2022 08:46:08

%S 1,5,49,605,8281,120125,1809025,27966125,440790025,7051890125,

%T 114160867129,1865975723045,30743797894681,509948702030045,

%U 8507207970913729,142626515754330125,2401552098016698025,40591712338241826125,688413807606268692025,11710401759994742685125

%N a(n) = Sum_{k=0..n} C(2*k, k)^2 * C(n+k, n-k).

%C The g.f.s formed from a(2*n)^(1/2) and (a(2*n+1)/5)^(1/2) are:

%C A243946: sqrt( (1+x + sqrt(1-18*x+x^2)) / (2*(1-18*x+x^2)) );

%C A243947: sqrt( (1+x - sqrt(1-18*x+x^2)) / (10*x*(1-18*x+x^2)) ).

%C Lim_{n->infinity} a(n+1)/a(n) = 9 + 4*sqrt(5).

%C Diagonal of rational function 1/(1 - (x + y + x*z + y*z + x*y*z)). - _Gheorghe Coserea_, Aug 24 2018

%H Seiichi Manyama, <a href="/A243945/b243945.txt">Table of n, a(n) for n = 0..800</a>

%H A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, <a href="http://arxiv.org/abs/1507.03227">Diagonals of rational functions and selected differential Galois groups</a>, arXiv preprint arXiv:1507.03227 [math-ph], 2015.

%F G.f.: Sum_{n>=0} binomial(2*n, n)^2 * x^n / (1-x)^(2*n+1).

%F G.f.: 1 / AGM(1-x, sqrt(1-18*x+x^2)), where AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean.

%F a(2*n) = A243946(n)^2.

%F a(2*n+1) = 5 * A243947(n)^2.

%F Recurrence: n^2*(2*n-3)*a(n) = (2*n-1)*(19*n^2 - 38*n + 14)*a(n-1) - (2*n-3)*(19*n^2 - 38*n + 14)*a(n-2) + (n-2)^2*(2*n-1)*a(n-3). - _Vaclav Kotesovec_, Aug 18 2014

%F a(n) ~ (2+sqrt(5)) * (9+4*sqrt(5))^n / (4*Pi*n). - _Vaclav Kotesovec_, Aug 18 2014. Equivalently, a(n) ~ phi^(6*n + 3) / (4*Pi*n), where phi = A001622 is the golden ratio. - _Vaclav Kotesovec_, Dec 08 2021

%F a(n) = hypergeom([1/2, -n, n + 1], [1, 1], -4). - _Peter Luschny_, Mar 14 2018

%F G.f. y=A(x) satisfies: 0 = x*(x^2 - 1)*(x^2 - 18*x + 1)*y'' + (3*x^4 - 34*x^3 - 38*x^2 + 38*x - 1)*y' + (x^3 - 3*x^2 - 19*x + 5)*y. - _Gheorghe Coserea_, Aug 29 2018

%F From _Peter Bala_, Feb 07 2022: (Start)

%F a(n) = P(n,sqrt(5))^2, where P(n,x) denotes the n-th Legendre polynomial.

%F The Gauss congruences a(n*p^k) == a(n*p^(k-1)) ( mod p^k ) hold for all primes p and positive integers n and k. (End)

%e G.f.: A(x) = 1 + 5*x + 49*x^2 + 605*x^3 + 8281*x^4 + 120125*x^5 + ... where

%e A(x) = 1/(1-x) + 2^2*x/(1-x)^3 + 6^2*x^2/(1-x)^5 + 20^2*x^3/(1-x)^7 + 70^2*x^4/(1-x)^9 + 252^2*x^5/(1-x)^11 + 924^2*x^6/(1-x)^13 + ... + A000984(n)^2*x^n/(1-x)^(2*n+1) + ...

%t Table[Sum[Binomial[2*k, k]^2 * Binomial[n + k, n - k],{k, 0, n}], {n, 0, 20}] (* _Vaclav Kotesovec_, Aug 18 2014 *)

%t a[n_] := HypergeometricPFQ[{1/2, -n, n + 1}, {1, 1}, -4];

%t Table[a[n], {n, 0, 19}] (* _Peter Luschny_, Mar 14 2018 *)

%o (PARI) {a(n)=sum(k=0, n, binomial(2*k, k)^2*binomial(n+k, n-k))}

%o for(n=0, 20, print1(a(n), ", "))

%o (PARI) {a(n)=local(A=1); A=sum(m=0, n, binomial(2*m, m)^2 * x^m/(1-x +x*O(x^n))^(2*m+1)); polcoeff(A, n)}

%o for(n=0, 20, print1(a(n), ", "))

%o (PARI) {a(n)=polcoeff( 1 / agm(1-x, sqrt((1-x)^2 - 16*x +x*O(x^n))), n)}

%o for(n=0,20,print1(a(n),", "))

%o (Magma) &cat[ [&+[ Binomial(2*k, k)^2 * Binomial(n+k, n-k): k in [0..n]]]: n in [0..30]]; // _Vincenzo Librandi_, Aug 25 2018

%Y Cf. A243946, A243947, A245925.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Aug 17 2014