OFFSET
1,1
COMMENTS
Primitive elements of A056866; consequently, each term is divisible by 4 and either 3 or 5.
That is, numbers n such that n is in A056866, but no smaller m dividing n is in A056866. - Charles R Greathouse IV, May 09 2018
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) ~ kn^3 log^3 n, where k = 27/8. - Charles R Greathouse IV, Sep 11 2012
PROG
(PARI) list(lim)={
my(v=List([5616]), t);
forprime(p=2, log(lim)\log(8)+2,
listput(v, (4^p-1)<<p)
);
forprime(p=3, log(2*lim)\log(27)+2,
listput(v, 3^p*(9^p\2))
);
forprime(p=3, log(lim)\log(32)+2,
listput(v, (4^p-1)*(2^p-1)<<(2*p))
);
forprime(p=7, sqrtn(2*lim, 3)+1,
if(p%5>1 && p%5<4, listput(v, p^2\2*p))
);
vecsort(select(n->n<=lim, Vec(v)))
};
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Charles R Greathouse IV, Sep 11 2012
STATUS
approved