login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247480
G.f. A(x) satisfies: x = Sum_{n>=1} 1/A(x)^(5*n) * Product_{k=1..n} (1 - 1/A(x)^(2*k-1)).
3
1, 1, 3, 21, 172, 1557, 14937, 148870, 1523150, 15874211, 167584946, 1784250269, 19082848084, 204183773733, 2174724531143, 22887441573480, 235016048710027, 2294441979279215, 19936497820248076, 118333942636382173, -709004900481995789, -49850788347995316262
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * 12^n * n^(n-2) / (exp(n) * Pi^(2*n)), where c = -sqrt(6) * Pi^3 * exp(5*Pi^2/24)/24 = -24.7341070998048267... - Vaclav Kotesovec, Dec 01 2014, updated Aug 22 2017
MATHEMATICA
nmax = 20; aa = ConstantArray[0, nmax]; aa[[1]] = 1; Do[AGF = 1+Sum[aa[[n]]*x^n, {n, 1, j-1}]+koef*x^j; sol=Solve[SeriesCoefficient[Sum[Product[(1-1/AGF^(2m-1))/AGF^5, {m, 1, k}], {k, 1, j}], {x, 0, j}]==0, koef][[1]]; aa[[j]]=koef/.sol[[1]], {j, 2, nmax}]; Flatten[{1, aa}]
CROSSREFS
Cf. A247482 (exponent=0), A247481 (exponent=1), A249934 (exponent=3), A214692 (exponent=4), A214693 (exponent=6), A214694 (exponent=8), A214695 (exponent=10).
Sequence in context: A206178 A233861 A206397 * A365136 A228923 A287995
KEYWORD
sign
AUTHOR
Vaclav Kotesovec, Dec 01 2014
STATUS
approved