OFFSET
0,3
COMMENTS
Compare the g.f. to the identity:
G(x) = Sum_{n>=0} 1/G(x)^(2*n) * Product_{k=1..n} (1 - 1/G(x)^(2*k-1))
which holds for all power series G(x) such that G(0)=1.
FORMULA
G.f. satisfies: 1+x = A(y) where y is a 25-degree polynomial in x and is the g.f. of row 5 in triangle A214690.
G.f. satisfies: x = Sum_{n>=1} 1/A(x)^(n*(n+10)) * Product_{k=1..n} (A(x)^(2*k-1) - 1).
EXAMPLE
G.f.: A(x) = 1 + x + 8*x^2 + 116*x^3 + 1972*x^4 + 36682*x^5 + 722098*x^6 +...
The g.f. satisfies:
x = (A(x)-1)/A(x)^11 + (A(x)-1)*(A(x)^3-1)/A(x)^24 + (A(x)-1)*(A(x)^3-1)*(A(x)^5-1)/A(x)^39 + (A(x)-1)*(A(x)^3-1)*(A(x)^5-1)*(A(x)^7-1)/A(x)^56 +
(A(x)-1)*(A(x)^3-1)*(A(x)^5-1)*(A(x)^7-1)*(A(x)^9-1)/A(x)^75 +...
PROG
(PARI) {a(n)=if(n<0, 0, polcoeff(1 + serreverse(x - 8*x^2 + 12*x^3 + 108*x^4 - 218*x^5 - 1938*x^6 - 834*x^7 + 27124*x^8 + 136919*x^9 + 393601*x^10 +
809873*x^11 + 1288950*x^12 + 1646268*x^13 + 1720788*x^14 + 1487263*x^15 + 1067345*x^16 + 635682*x^17 + 312646*x^18 + 125761*x^19 + 40734*x^20 +
10373*x^21 + 2001*x^22 + 275*x^23 + 24*x^24 + x^25 +x^2*O(x^n)), n))}
(PARI) {a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=-polcoeff(sum(m=1, #A, 1/Ser(A)^(10*m)*prod(k=1, m, 1-1/Ser(A)^(2*k-1))), #A-1)); A[n+1]}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 26 2012
STATUS
approved