login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214695
G.f. A(x) satisfies: x = Sum_{n>=1} 1/A(x)^(10*n) * Product_{k=1..n} (1 - 1/A(x)^(2*k-1)).
8
1, 1, 8, 116, 1972, 36682, 722098, 14784834, 311629580, 6716892893, 147372681787, 3280609461927, 73912217824094, 1682234535898788, 38621258859241912, 893358073179541313, 20800314016777824187, 487100732909778007223, 11465386711990265812207
OFFSET
0,3
COMMENTS
Compare the g.f. to the identity:
G(x) = Sum_{n>=0} 1/G(x)^(2*n) * Product_{k=1..n} (1 - 1/G(x)^(2*k-1))
which holds for all power series G(x) such that G(0)=1.
FORMULA
G.f. satisfies: 1+x = A(y) where y is a 25-degree polynomial in x and is the g.f. of row 5 in triangle A214690.
G.f. satisfies: x = Sum_{n>=1} 1/A(x)^(n*(n+10)) * Product_{k=1..n} (A(x)^(2*k-1) - 1).
EXAMPLE
G.f.: A(x) = 1 + x + 8*x^2 + 116*x^3 + 1972*x^4 + 36682*x^5 + 722098*x^6 +...
The g.f. satisfies:
x = (A(x)-1)/A(x)^11 + (A(x)-1)*(A(x)^3-1)/A(x)^24 + (A(x)-1)*(A(x)^3-1)*(A(x)^5-1)/A(x)^39 + (A(x)-1)*(A(x)^3-1)*(A(x)^5-1)*(A(x)^7-1)/A(x)^56 +
(A(x)-1)*(A(x)^3-1)*(A(x)^5-1)*(A(x)^7-1)*(A(x)^9-1)/A(x)^75 +...
PROG
(PARI) {a(n)=if(n<0, 0, polcoeff(1 + serreverse(x - 8*x^2 + 12*x^3 + 108*x^4 - 218*x^5 - 1938*x^6 - 834*x^7 + 27124*x^8 + 136919*x^9 + 393601*x^10 +
809873*x^11 + 1288950*x^12 + 1646268*x^13 + 1720788*x^14 + 1487263*x^15 + 1067345*x^16 + 635682*x^17 + 312646*x^18 + 125761*x^19 + 40734*x^20 +
10373*x^21 + 2001*x^22 + 275*x^23 + 24*x^24 + x^25 +x^2*O(x^n)), n))}
(PARI) {a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=-polcoeff(sum(m=1, #A, 1/Ser(A)^(10*m)*prod(k=1, m, 1-1/Ser(A)^(2*k-1))), #A-1)); A[n+1]}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Cf. A214690, A214692, A214693, A214694, A209441 (variant).
Sequence in context: A220575 A240890 A241105 * A235338 A231553 A291077
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 26 2012
STATUS
approved