login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: x = Sum_{n>=1} 1/A(x)^(10*n) * Product_{k=1..n} (1 - 1/A(x)^(2*k-1)).
8

%I #3 Jul 26 2012 12:59:35

%S 1,1,8,116,1972,36682,722098,14784834,311629580,6716892893,

%T 147372681787,3280609461927,73912217824094,1682234535898788,

%U 38621258859241912,893358073179541313,20800314016777824187,487100732909778007223,11465386711990265812207

%N G.f. A(x) satisfies: x = Sum_{n>=1} 1/A(x)^(10*n) * Product_{k=1..n} (1 - 1/A(x)^(2*k-1)).

%C Compare the g.f. to the identity:

%C G(x) = Sum_{n>=0} 1/G(x)^(2*n) * Product_{k=1..n} (1 - 1/G(x)^(2*k-1))

%C which holds for all power series G(x) such that G(0)=1.

%F G.f. satisfies: 1+x = A(y) where y is a 25-degree polynomial in x and is the g.f. of row 5 in triangle A214690.

%F G.f. satisfies: x = Sum_{n>=1} 1/A(x)^(n*(n+10)) * Product_{k=1..n} (A(x)^(2*k-1) - 1).

%e G.f.: A(x) = 1 + x + 8*x^2 + 116*x^3 + 1972*x^4 + 36682*x^5 + 722098*x^6 +...

%e The g.f. satisfies:

%e x = (A(x)-1)/A(x)^11 + (A(x)-1)*(A(x)^3-1)/A(x)^24 + (A(x)-1)*(A(x)^3-1)*(A(x)^5-1)/A(x)^39 + (A(x)-1)*(A(x)^3-1)*(A(x)^5-1)*(A(x)^7-1)/A(x)^56 +

%e (A(x)-1)*(A(x)^3-1)*(A(x)^5-1)*(A(x)^7-1)*(A(x)^9-1)/A(x)^75 +...

%o (PARI) {a(n)=if(n<0, 0, polcoeff(1 + serreverse(x - 8*x^2 + 12*x^3 + 108*x^4 - 218*x^5 - 1938*x^6 - 834*x^7 + 27124*x^8 + 136919*x^9 + 393601*x^10 +

%o 809873*x^11 + 1288950*x^12 + 1646268*x^13 + 1720788*x^14 + 1487263*x^15 + 1067345*x^16 + 635682*x^17 + 312646*x^18 + 125761*x^19 + 40734*x^20 +

%o 10373*x^21 + 2001*x^22 + 275*x^23 + 24*x^24 + x^25 +x^2*O(x^n)), n))}

%o (PARI) {a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=-polcoeff(sum(m=1, #A, 1/Ser(A)^(10*m)*prod(k=1, m, 1-1/Ser(A)^(2*k-1))), #A-1)); A[n+1]}

%o for(n=0, 25, print1(a(n), ", "))

%Y Cf. A214690, A214692, A214693, A214694, A209441 (variant).

%K nonn

%O 0,3

%A _Paul D. Hanna_, Jul 26 2012