Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #59 Jul 11 2020 12:36:24
%S 1,3,21,171,1521,14283,138909,1385163,14072193,145039923,1512191781,
%T 15914734443,168802010001,1802247516891,19350710547021,
%U 208783189719531,2262263134211073,24604815145831011,268499713118585781,2938736789722114731,32250788066104022961
%N a(n) = Sum_{k=0..n} binomial(n,k)^3 * 2^k.
%C Ignoring initial term, equals the logarithmic derivative of A206177.
%C Compare to Franel numbers: A000172(n) = Sum_{k=0..n} binomial(n,k)^3.
%C Diagonal of rational functions 1/(1 - x*y + y*z + 2*x*z - 3*x*y*z), 1/(1 + y + z + x*y + y*z + 2*x*z + 3*x*y*z), 1/(1 - x + 2*z + x*y - y*z - 2*x*z + 3*x*y*z), 1/(1 - x - y - z + x*y + y*z + x*z - 3*x*y*z), 1/(1 - x + y + 2*z - x*y + 2*y*z - 2*x*z - 3*x*y*z). - _Gheorghe Coserea_, Jul 03 2018
%H Vincenzo Librandi, <a href="/A206178/b206178.txt">Table of n, a(n) for n = 0..200</a>
%H Vaclav Kotesovec, <a href="http://www.kotesovec.cz/math_articles/kotesovec_binomial_asymptotics.pdf">Asymptotic of a sums of powers of binomial coefficients * x^k</a>, 2012.
%F a(2*3^n) == 3 (mod 9) for n>=0; a(n) == 0 (mod 9) if n/2 > 1 is not a power of 3.
%F Recurrence: (n+3)^2*(3*n+4)*a(n+3) - 3*(9*n^3+57*n^2+116*n+74)*a(n+2) - 3*(27*n^3+144*n^2+252*n+145)*a(n+1) - 27*(3*n+7)*(n+1)^2*a(n) = 0. - _Vaclav Kotesovec_, Sep 11 2012
%F a(n) ~ (1+2^(1/3))^2/(2*2^(1/3)*sqrt(3)*Pi) * (3*2^(2/3)+3*2^(1/3)+3)^n/n. - _Vaclav Kotesovec_, Sep 19 2012
%F G.f.: hypergeom([1/3, 2/3],[1],54*x^2/(1-3*x)^3)/(1-3*x). - _Mark van Hoeij_, May 02 2013
%F a(n) = hypergeom([-n,-n,-n],[1,1], -2). - _Peter Luschny_, Sep 23 2014
%F G.f. y=A(x) satisfies: 0 = x*(3*x + 2)*(27*x^3 + 27*x^2 + 9*x - 1)*y'' + (243*x^4 + 378*x^3 + 189*x^2 + 36*x - 2)*y' + 3*(x + 1)*(27*x^2 + 12*x + 2)*y. - _Gheorghe Coserea_, Jul 01 2018
%e L.g.f.: L(x) = 3*x + 21*x^2/2 + 171*x^3/3 + 1521*x^4/4 + 14283*x^5/5 +...
%e Exponentiation equals the g.f. of A206177:
%e exp(L(x)) = 1 + 3*x + 15*x^2 + 93*x^3 + 657*x^4 + 5067*x^5 + 41579*x^6 +...
%t Flatten[{1,RecurrenceTable[{(n+3)^2*(3*n+4)*a[n+3]-3*(9*n^3+57*n^2+116*n+74)*a[n+2]-3*(27*n^3+144*n^2+252*n+145)*a[n+1]-27*(3*n+7)*(n+1)^2*a[n]==0, a[1]==3, a[2]==21, a[3]==171},a,{n,1,20}]}] (* _Vaclav Kotesovec_, Sep 11 2012 *)
%t Table[HypergeometricPFQ[{-n, -n, -n}, {1, 1}, -2], {n, 0, 20}] (* _Jean-François Alcover_, Oct 25 2019 *)
%o (PARI) {a(n)=sum(k=0,n,binomial(n,k)^3*2^k)}
%o (Sage)
%o A206178 = lambda n: hypergeometric([-n,-n,-n], [1,1], -2)
%o [Integer(A206178(n).n(100)) for n in (0..20)] # _Peter Luschny_, Sep 23 2014
%Y Cf. A206177, A000172, A206180, A216483, A216636.
%Y Related to diagonal of rational functions: A268545-A268555.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Feb 04 2012
%E Minor edits by _Vaclav Kotesovec_, Mar 31 2014