login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A206177
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k)^3 * 2^k ).
2
1, 3, 15, 93, 657, 5067, 41579, 357297, 3181305, 29133387, 272939679, 2605588317, 25269158105, 248367451299, 2469462766347, 24800305889217, 251258730935697, 2565372042688563, 26373806952805519, 272818956588097341, 2837840577104379201, 29667671262881320347
OFFSET
0,2
COMMENTS
Logarithmic derivative yields A206178.
EXAMPLE
G.f.: A(x) = 1 + 3*x + 15*x^2 + 93*x^3 + 657*x^4 + 5067*x^5 + 41579*x^6 +...
where
log(A(x)) = 3*x + 21*x^2/2 + 171*x^3/3 + 1521*x^4/4 + 14283*x^5/5 + 138909*x^6/6 +...+ A206178(n)*x^n/n +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, x^m/m*sum(k=0, m, binomial(m, k)^3*2^k))+x*O(x^n)), n)}
CROSSREFS
Cf. A206178.
Sequence in context: A379087 A203014 A060066 * A366638 A272230 A308457
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2012
STATUS
approved