The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206177 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k)^3 * 2^k ). 2
 1, 3, 15, 93, 657, 5067, 41579, 357297, 3181305, 29133387, 272939679, 2605588317, 25269158105, 248367451299, 2469462766347, 24800305889217, 251258730935697, 2565372042688563, 26373806952805519, 272818956588097341, 2837840577104379201, 29667671262881320347 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Logarithmic derivative yields A206178. LINKS EXAMPLE G.f.: A(x) = 1 + 3*x + 15*x^2 + 93*x^3 + 657*x^4 + 5067*x^5 + 41579*x^6 +... where log(A(x)) = 3*x + 21*x^2/2 + 171*x^3/3 + 1521*x^4/4 + 14283*x^5/5 + 138909*x^6/6 +...+ A206178(n)*x^n/n +... PROG (PARI) {a(n)=polcoeff(exp(sum(m=1, n, x^m/m*sum(k=0, m, binomial(m, k)^3*2^k))+x*O(x^n)), n)} CROSSREFS Cf. A206178. Sequence in context: A103210 A203014 A060066 * A272230 A308457 A241711 Adjacent sequences:  A206174 A206175 A206176 * A206178 A206179 A206180 KEYWORD nonn AUTHOR Paul D. Hanna, Feb 04 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 02:40 EDT 2022. Contains 354003 sequences. (Running on oeis4.)