login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206179
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k)^3 * 3^k ).
1
1, 4, 25, 196, 1747, 16996, 175936, 1907224, 21423385, 247515796, 2925668236, 35239199704, 431207470105, 5347823877172, 67093724913313, 850241358959044, 10869754843088962, 140045452765874704, 1816842996684686656, 23716478425653945472, 311314468637807994391
OFFSET
0,2
COMMENTS
Logarithmic derivative yields A206180.
EXAMPLE
G.f.: A(x) = 1 + 4*x + 25*x^2 + 196*x^3 + 1747*x^4 + 16996*x^5 +...
where
log(A(x)) = 4*x + 34*x^2/2 + 352*x^3/3 + 3946*x^4/4 + 46744*x^5/5 + 573616*x^6/6 +...+ A206180(n)*x^n/n +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, x^m/m*sum(k=0, m, binomial(m, k)^3*3^k))+x*O(x^n)), n)}
for(n=0, 41, print1(a(n), ", "))
CROSSREFS
Sequence in context: A322442 A036449 A051500 * A151342 A001246 A202827
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2012
STATUS
approved