login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows, T(n, k) (0 <= k <= n) = (-m)^(n-k)*[x^k] KummerU(-n, 1/m, x) for m = 3.
0

%I #14 Sep 03 2023 10:14:10

%S 1,1,1,4,8,1,28,84,21,1,280,1120,420,40,1,3640,18200,9100,1300,65,1,

%T 58240,349440,218400,41600,3120,96,1,1106560,7745920,5809440,1383200,

%U 138320,6384,133,1,24344320,194754560,170410240,48688640,6086080,374528,11704,176,1

%N Triangle read by rows, T(n, k) (0 <= k <= n) = (-m)^(n-k)*[x^k] KummerU(-n, 1/m, x) for m = 3.

%C Second diagonal is A000567.

%F E.g.f.: exp(t*x/(1-3*x))/(1-3*x)^(1/3).

%e Taylor series starts:

%e 1 + (t + 1)*x + (t^2 + 8*t + 4)*x^2 + (t^3 + 21*t^2 + 84*t + 28)*x^3 + (t^4 + 40*t^3 + 420*t^2 + 1120*t + 280)*x^4 + O(x^5).

%e Triangle starts:

%e [0] 1

%e [1] 1, 1

%e [2] 4, 8, 1

%e [3] 28, 84, 21, 1

%e [4] 280, 1120, 420, 40, 1

%e [5] 3640, 18200, 9100, 1300, 65, 1

%e [6] 58240, 349440, 218400, 41600, 3120, 96, 1

%e [7] 1106560, 7745920, 5809440, 1383200, 138320, 6384, 133, 1

%e [8] 24344320, 194754560, 170410240, 48688640, 6086080, 374528, 11704, 176, 1

%p ser := n -> series(KummerU(-n, 1/3, x), x, n+1):

%p seq(seq((-3)^(n-k)*coeff(ser(n), x, k), k=0..n), n=0..8);

%p # Alternative:

%p gf := exp(t*x/(1-3*x))/(1-3*x)^(1/3): ser := n -> series(gf, x, n+1):

%p c := n -> coeff(ser(n), x, n): seq(seq(n!*coeff(c(n), t, k), k=0..n), n=0..8);

%t (* rows[n], n[0..oo] *)

%t n=12;r={};For[k=0,k<n+1,k++,AppendTo[r,Binomial[n,n-k]/Product[3*j+1,{j,0,k-1}]*Product[3*j+1,{j,0,n-1}]]];r

%t (* columns[k], k[0..oo] *)

%t k=2;c={};For[n=k,n<13,n++,AppendTo[c,Binomial[n,n-k]/Product[3*j+1,{j,0,k-1}]*Product[3*j+1,{j,0,n-1}]]];c

%t (* sequence *)

%t s={};For[n=0,n<13,n++,For[k=0,k<n+1,k++,AppendTo[s,Binomial[n,n-k]/Product[3*j+1,{j,0,k-1}]*Product[3*j+1,{j,0,n-1}]]]];s

%t (* _Detlef Meya_, Jul 31 2023 *)

%Y Cf. T(n, 0) = A007559(n), T(n, n-1) = A000567(n) for n >= 1.

%Y Cf. |A021009| (m=1), A176230 (m=2), this sequence (m=3).

%K nonn,tabl

%O 0,4

%A _Peter Luschny_, Jan 18 2020