

A176994


Least odd prime p such that p#*2^n1 is prime, with p# the primorial A034386(p).


3



3, 3, 3, 3, 5, 3, 3, 7, 7, 5, 3, 109, 17, 5, 13, 17, 5, 3, 17, 67, 11, 89, 13, 17, 7, 89, 31, 29, 19, 37, 5, 7, 29, 3, 79, 43, 41, 3, 11, 53, 5, 13, 3, 29, 11, 137, 179, 227, 11, 11, 97, 59, 53, 11, 3, 83, 17, 47, 19, 19, 29, 73, 41, 3, 7, 11, 79, 71, 13, 41, 257, 19, 5, 151, 79, 3, 31, 19, 79, 5, 281, 5, 37, 263, 139, 17, 23, 127, 223, 151, 149, 131, 113, 3, 47, 41, 59, 31, 23, 89
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


LINKS

Pierre CAMI, Table of n, a(n) for n = 0..2642


MATHEMATICA

Table[p=3; prod=6; While[! PrimeQ[prod*2^n1], p=NextPrime[p]; prod=prod*p]; p, {n, 0, 100}]


PROG

PFGW SCRIPTIFY PROGRAM
Prime P in pfgw.log file
command : pfgw f in.txt
in.txt file follows
SCRIPT
DIM nn, 1
DIM kk
DIMS tt
LABEL loopn
SET nn, nn+1
SET kk, 1
LABEL loopk
SET kk, kk+1
SETS tt, %d, %d\,; nn; p(kk)
PRP p(kk)#*2^nn1, tt
IF !(ISPRP  ISPRIME) THEN GOTO loopk
GOTO loopn
(Sage) primorial = lambda n: prod(primes(n+1)) # includes n, if prime
A176994 = lambda n: next(p for p in Primes() if p > 2 and is_pseudoprime(primorial(p)*2**n1)) # D. S. McNeil, Dec 09 2010


CROSSREFS

Cf. A085427.
Sequence in context: A328914 A295084 A068048 * A264050 A262995 A125713
Adjacent sequences: A176991 A176992 A176993 * A176995 A176996 A176997


KEYWORD

nonn


AUTHOR

Pierre CAMI, Dec 08 2010


STATUS

approved



