login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A176997 Integers n such that 2^(n-1) == 1 (mod n). 10
1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Old definition was: Odd integers n such that 2^(n-1) == 4^(n-1) == 8^(n-1) == ... == k^(n-1) (mod n), where k = A062383(n). Dividing 2^(n-1) == 4^(n-1) (mod n) by 2^(n-1), we get 1 == 2^(n-1) (mod n), implying the current definition. - Max Alekseyev, Sep 22 2016

The union of {1}, the odd primes, and the Fermat pseudoprimes, i.e., {1} U A065091 U A001567. Also, the union of A006005 and A001567 (conjectured by Alois P. Heinz, Dec 10 2010). - Max Alekseyev, Sep 22 2016

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..10000

EXAMPLE

5 is in the sequence because 2^(5-1) == 4^(5-1) == 8^(5-1) == 1 (mod 5).

MATHEMATICA

m = 1; Join[Select[Range[m], Divisible[2^(# - 1) - m, #] &],

Select[Range[m + 1, 10^3], PowerMod[2, # - 1, #] == m &]] (* Robert Price, Oct 12 2018 *)

PROG

(PARI) isok(n) = Mod(2, n)^(n-1) == 1; \\ Michel Marcus, Sep 23 2016

CROSSREFS

The odd terms of A015919.

Odd integers n such that 2^n == 2^k (mod n): this sequence (k=1), A173572 (k=2), A276967 (k=3), A033984 (k=4), A276968 (k=5), A215610 (k=6), A276969 (k=7), A215611 (k=8), A276970 (k=9), A215612 (k=10), A276971 (k=11), A215613 (k=12).

Cf. A000079, A062173, A062175, A176817.

Sequence in context: A006005 A065091 A160656 * A240699 A065380 A211075

Adjacent sequences:  A176994 A176995 A176996 * A176998 A176999 A177000

KEYWORD

nonn

AUTHOR

Juri-Stepan Gerasimov, Dec 08 2010

EXTENSIONS

Edited by Max Alekseyev, Sep 22 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 14 19:58 EST 2019. Contains 329128 sequences. (Running on oeis4.)