login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173572
Odd integers n such that 2^n == 4 (mod n).
16
1, 20737, 93527, 228727, 373457, 540857, 2231327, 11232137, 15088847, 15235703, 24601943, 43092527, 49891487, 66171767, 71429177, 137134727, 207426737, 209402327, 269165561, 302357057, 383696711, 513013327
OFFSET
1,2
COMMENTS
The odd terms of A015921.
Also, nonprime integers n such that 2^(n-2) == 1 (mod n).
For all m, 2^A050259(m)-1 belongs to this sequence.
If n > 1 is a term and p is a primitive prime factor of 2^(n-2)-1, then n*p is also a term. Hence, the sequence is infinite. (Rotkiewicz 1984)
REFERENCES
A. E. Bojarincev, Asymptotic expressions for the n-th composite number, Univ. Mat. Zap. 6:21-43 (1967). (in Russian)
R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, Third Edition, 2004
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 2.
LINKS
Max Alekseyev, Table of n, a(n) for n = 1..722 (all terms below 10^14)
C. K. Caldwell, Composite Numbers
A. Rotkiewicz, On the congruence 2^(n-2) == 1 (mod n). Math. Comp. 43 (1984), 271-272.
MAPLE
with(numtheory): for n from 1 to 100000000 do: a:= 2^(n-2)- 1; b:= a / n; c:= floor(b): if b = c and tau(n) <> 2 then print (n); else fi; od:
MATHEMATICA
m = 4; Join[Select[Range[1, m, 2], Divisible[2^# - m, #] &], Select[Range[m + 1, 10^6, 2], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 12 2018 *)
PROG
(PARI) is(n) = n%2==1 && Mod(2, n)^n==Mod(4, n) \\ Jinyuan Wang, Feb 22 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 22 2010
EXTENSIONS
Edited and term 1 prepended by Max Alekseyev, Aug 09 2012
STATUS
approved