login
A173138
Composite numbers k such that 2^(k-4) == 1 (mod k).
4
4, 40369, 673663, 990409, 1697609, 2073127, 6462649, 7527199, 7559479, 14421169, 21484129, 37825753, 57233047, 130647919, 141735559, 179203369, 188967289, 218206489, 259195009, 264538057, 277628449, 330662479, 398321239, 501126487, 506958313, 612368311, 767983759
OFFSET
1,1
COMMENTS
Besides the initial term, the sequence coincides with A033984 and consists of the odd terms > 7 of A015924.
REFERENCES
A. E. Bojarincev, Asymptotic expressions for the n-th composite number, Univ. Mat. Zap. 6:21-43 (1967). - In Russian.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 2.
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..62
EXAMPLE
4 is a term: 2^(4 - 4) = 1 (mod 4).
MAPLE
with(numtheory): for n from 1 to 100000000 do: a:= 2^(n-4)- 1; b:= a / n; c:= floor(b): if b = c and tau(n) <> 2 then print (n); else fi; od:
MATHEMATICA
Select[Range[500000000], !PrimeQ[#]&&PowerMod[2, #-4, #]==1&] (* Harvey P. Dale, Nov 23 2011 *)
PROG
(PARI) is(n)=!isprime(n) && n>1 && Mod(2, n)^(n-4)==1 \\ Charles R Greathouse IV, Nov 23 2011
(Python)
from sympy import isprime, prime, nextprime
def afind(k=4):
while True:
if pow(2, k-4, k) == 1 and not isprime(k): print(k, end=", ")
k += 1
afind() # Michael S. Branicky, Mar 21 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 10 2010
EXTENSIONS
Simplified the definition, added cross-reference to A033984 R. J. Mathar, May 18 2010
More terms from Harvey P. Dale, Nov 23 2011
Typo in a(13) corrected by Georg Fischer, Mar 19 2022
a(24) and beyond from Michael S. Branicky, Mar 21 2022
STATUS
approved