login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173139
G.f. satisfies: A(x) = x*A(x) + A(x^2*A(x)^2).
0
1, 1, 2, 4, 11, 31, 97, 309, 1026, 3466, 11964, 41856, 148373, 531233, 1919313, 6986745, 25604367, 94379887, 349702606, 1301729084, 4865680876, 18255350676, 68724316775, 259521249065, 982796892300, 3731493081316, 14201727734640
OFFSET
0,3
FORMULA
G.f. satisfies: A(x/(x + A(x^2))) = x + A(x^2).
G.f. satisfies: A(x) = (1/x)*Series_Reversion(x/(x + A(x^2))).
Given e.g.f. E(x), then E(x)/exp(x) is an even function.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 11*x^4 + 31*x^5 + 97*x^6 +...
Let G(x) = x + A(x^2):
G(x) = 1 + x + x^2 + 2*x^4 + 4*x^6 + 11*x^8 + 31*x^10 + 97*x^12 +...
then A(x) = G(x*A(x)) and G(x) = A(x/G(x)).
Given e.g.f. E(x), then E(x)/exp(x) is the even function:
E(x)/exp(x) = 1 + x^2/2! + 4*x^4/4! + 21*x^6/6! + 129*x^8/8! + 863*x^10/10! + 6109*x^12/12! +...
PROG
(PARI) {a(n)=local(A=1+x+x^2+x*O(x^n), B); for(i=1, #binary(n)+1, A=x+subst(A, x, x^2+x*O(x^n)); A=(1/x)*serreverse(x/A)); polcoeff(A, n)}
CROSSREFS
Sequence in context: A118974 A119020 A073191 * A148164 A364594 A213091
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 10 2010
STATUS
approved