login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173142
a(n) = n^n - (n-1)^(n-1) - (n-2)^(n-2) - ... - 1.
4
1, 3, 22, 224, 2837, 43243, 773474, 15903604, 369769661, 9594928683, 274906599294, 8620383706328, 293663289402069, 10799919901775579, 426469796631518922, 17997426089579351788, 808344199828497012733
OFFSET
1,2
LINKS
FORMULA
a(n) = 2*(n^n) - A001923(n), for n > 0. - Kritsada Moomuang, Feb 11 2019
EXAMPLE
1^1 - 0 = 1,
2^2 - 1 = 3,
3^3 - 2^2 - 1 = 22,
4^4 - 3^3 - 2^2 - 1 = 224, ...
MATHEMATICA
f[n_]:=n^n; lst={}; Do[a=f[n]; Do[a-=f[m], {m, n-1, 1, -1}]; AppendTo[lst, a], {n, 30}]; lst
Table[n^n -Sum[(n-k)^(n-k), {k, 1, n-1}], {n, 1, 20}] (* G. C. Greubel, Feb 11 2019 *)
PROG
(PARI) {a(n) = n^n - sum(k=1, n-1, (n-k)^(n-k))}; \\ G. C. Greubel, Feb 11 2019
(Magma) [n^n - (&+[(n-k)^(n-k): k in [1..n-1]]): n in [1..20]]; // G. C. Greubel, Feb 11 2019
(Sage) [n^n - sum((n-k)^(n-k) for k in (1..n-1)) for n in (1..20)] # G. C. Greubel, Feb 11 2019
CROSSREFS
Cf. A001923.
Sequence in context: A066573 A341476 A303190 * A073530 A120667 A196958
KEYWORD
nonn
AUTHOR
STATUS
approved