login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of degree-n even permutations of order exactly 4.
17

%I #12 Feb 09 2020 14:28:34

%S 0,0,0,0,0,90,630,3780,18900,94500,457380,3825360,31505760,312432120,

%T 2704501800,22984481520,179863997040,1531709328240,13078616488560,

%U 147223414987200,1657733805020160,20131890668255520,226464779237447520,2542924546378413120,27053572399079688000

%N Number of degree-n even permutations of order exactly 4.

%H Andrew Howroyd, <a href="/A051695/b051695.txt">Table of n, a(n) for n = 1..200</a>

%F a(n) = (A001473(n) + A051685(n))/2.

%F E.g.f.: (exp(x + x^2/2 + x^4/4) + exp(x - x^2/2 - x^4/4) - exp(x + x^2/2) - exp(x - x^2/2))/2. - _Andrew Howroyd_, Feb 01 2020

%t m = 26; ((Exp[x + x^2/2 + x^4/4] + Exp[x - x^2/2 - x^4/4] - Exp[x + x^2/2] - Exp[x - x^2/2])/2 + O[x]^m // CoefficientList[#, x]& // Rest) * Range[m - 1]! (* _Jean-François Alcover_, Feb 09 2020, after _Andrew Howroyd_ *)

%o (PARI) seq(n)={my(A=O(x*x^n)); Vec(serlaplace(exp(x + x^2/2 + x^4/4 + A) + exp(x - x^2/2 - x^4/4 + A) - exp(x + x^2/2 + A) - exp(x - x^2/2 + A))/2, -n)} \\ _Andrew Howroyd_, Feb 01 2020

%Y Cf. A001473, A048099, A051685.

%K easy,nonn

%O 1,6

%A _Vladeta Jovovic_

%E Terms a(19) and beyond from _Andrew Howroyd_, Feb 01 2020