The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A065950 Bessel polynomial {y_n}'''(1). 1
 0, 0, 0, 90, 3150, 81900, 1992060, 48771450, 1237774230, 32978969100, 927339227100, 27566149731120, 866148362679600, 28735959507074820, 1005105838958594100, 36999204981675832350, 1430792213377354462530, 58019598569681129648700 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 REFERENCES J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77. LINKS G. C. Greubel, Table of n, a(n) for n = 0..400 Index entries for sequences related to Bessel functions or polynomials FORMULA a(n) = 6*binomial(n, 3)*(1/2)_{n}*2^n*hypergeometric1f1(3-n, -2*n, 2), where (a)_{n} is the Pochhammer symbol. - G. C. Greubel, Aug 15 2017 G.f.: (90*x^3/(1-x)^7)*hypergeometric2f0(4,7/2; - ; 2*x/(1-x)^2). - G. C. Greubel, Aug 16 2017 a(n) ~ 2^(n + 1/2) * n^(n+3) / exp(n-1). - Vaclav Kotesovec, Jun 09 2019 MATHEMATICA Join[{0, 0, 0}, Table[6*Binomial[n, 3]*Pochhammer[1/2, n]*2^n* Hypergeometric1F1[3-n, -2*n, 2], {n, 3, 50}]] (* G. C. Greubel, Aug 15 2017 *) CoefficientList[Series[(90*t^3/(1-t)^7)*HypergeometricPFQ[{4, 7/2}, {}, 2*t/(1-t)^2], {t, 0, 50}], t] (* G. C. Greubel, Aug 16 2017 *) PROG (PARI) for(n=0, 50, print1(sum(k=0, n-3, ((n+k+3)!/(2^(k+3)*k!*(n-k-3)!))), ", ")) \\ G. C. Greubel, Aug 15 2017 (Magma) [0, 0, 0] cat [(&+[Binomial(n-3, k)*Factorial(n+k+3)/(2^(k+3) * Factorial(n-3)): k in [0..n-3]]): n in [3..30]]; // G. C. Greubel, Sep 23 2023 (SageMath) def A065950(n): return sum(binomial(n-3, k)*rising_factorial(n-2, k+6)//2^(k+3) for k in range(n-2)) [A065950(n) for n in range(31)] # G. C. Greubel, Sep 23 2023 CROSSREFS Cf. A001516, A001518. Sequence in context: A013415 A367458 A240426 * A058830 A013396 A013392 Adjacent sequences: A065947 A065948 A065949 * A065951 A065952 A065953 KEYWORD nonn AUTHOR N. J. A. Sloane, Dec 08 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 19 02:20 EDT 2024. Contains 376003 sequences. (Running on oeis4.)