The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A058830 Number of labeled n-node 4-valent graphs containing a single double edge. 8
 0, 0, 0, 0, 0, 0, 90, 3150, 131040, 6667920, 416593800, 31506454980, 2841125225400, 301392906637680, 37173926260360890, 5276692469017119150, 854273993613848327520, 156491796247034356836000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 REFERENCES R. C. Read and N. C. Wormald, Number of labeled 4-regular graphs, J. Graph Theory, 4 (1980), 203-212. LINKS Table of n, a(n) for n=0..17. FORMULA Read and Wormald give recurrence relations involving all sequences A005815 and A058830-A058837 (see the Maple program). - Emeric Deutsch, Jan 26 2005 MAPLE a[0]:=1: b[0]:=0: c[0]:=0: d[0]:=0: e[0]:=0: f[0]:=0: g[0]:=0: h[0]:=0: i[0]:=0: for p from 1 to 20 do a[p]:=((p-1)*(2*p-9)*a[p-1]+(2*p-8)*b[p-1]+c[p-1])/3: b[p]:=(6*p*(p-1)*a[p-1]+4*p*b[p-1]+p*d[p-1])/2: c[p]:=(6*p*(p-3)*b[p-1]+8*p*c[p-1]+4*p*d[p-1]+p*e[p-1])/4: d[p]:=p*b[p-1]+p*f[p-1]:e[p]:=(4*p*c[p-1]+4*p*d[p-1]+2*p*g[p-1]+p*(p-1)*(p-2)*a[p-3])/2:f[p]:=p*(p-1)*((4*p-8)*a[p-2]+2*b[p-2]+h[p-2])/2: g[p]:=p*(p-1)*(4*(p-3)*b[p-2]+4*c[p-2]+4*d[p-2]+2*f[p-2]+i[p-2])/2:h[p]:=p*((2*p-2)*a[p-1]+b[p-1]): i[p]:=p*((2*p-4)*b[p-1]+2*c[p-1]+2*d[p-1]+f[p-1]+h[p-1]): od: seq(b[n], n=0..20); # A058830(n)=b[n] - Emeric Deutsch, Jan 26 2005 CROSSREFS Cf. A005815, A058831, A058832, A058833, A058834, A058835, A058836, A058837. Sequence in context: A367458 A240426 A065950 * A013396 A013392 A013394 Adjacent sequences: A058827 A058828 A058829 * A058831 A058832 A058833 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Jan 05 2001 EXTENSIONS More terms from Emeric Deutsch, Jan 26 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 11 17:54 EDT 2024. Contains 375839 sequences. (Running on oeis4.)