Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Aug 15 2017 10:55:58
%S 0,0,0,90,630,2520,7560,18900,41580,83160,154440,270270,450450,720720,
%T 1113840,1670760,2441880,3488400,4883760,6715170,9085230,12113640,
%U 15939000,20720700,26640900,33906600,42751800,53439750,66265290,81557280,99681120,121041360,146084400
%N Bessel polynomial {y_n}'''(0).
%D J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
%H G. C. Greubel, <a href="/A065949/b065949.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Be#Bessel">Index entries for sequences related to Bessel functions or polynomials</a>
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).
%F a(n) = 90 * C(n-3, 6) = 90 * A000579(n-3). - _Ralf Stephan_, Sep 03 2003
%F From _Colin Barker_, Aug 01 2013: (Start)
%F a(n) = ((-2+n)*(-1+n)*n*(1+n)*(2+n)*(3+n))/8.
%F G.f.: -90*x^3 / (x-1)^7. (End)
%F E.g.f.: (1/8)*x^3*(120 + 90*x + 18*x^2 + x^3)*exp(x). - _G. C. Greubel_, Aug 15 2017
%t Drop[90*Binomial[Range[40]-3,6],5] (* _Harvey P. Dale_, Sep 20 2013 *)
%o (PARI) for(n=0,50, print1(90*binomial(n+3,6), ", ")) \\ _G. C. Greubel_, Aug 15 2017
%Y Cf. A001518, A001516.
%K nonn,easy
%O 0,4
%A _N. J. A. Sloane_, Dec 08 2001
%E More terms from _Colin Barker_, Aug 01 2013