login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203780
Number of (n+1) X 2 0..3 arrays with column and row pair sums b(i,j)=a(i,j)+a(i,j-1) and c(i,j)=a(i,j)+a(i-1,j) such that rows of b(i,j) and columns of c(i,j) are lexicographically nondecreasing.
1
90, 565, 3352, 18332, 93578, 452825, 2103364, 9466880, 41577146, 179125413, 760104672, 3186880092, 13234285226, 54540491961, 223403152908, 910633752400, 3697500096250, 14966619506101, 60431546809704, 243527111738236
OFFSET
1,1
COMMENTS
Column 1 of A203787.
LINKS
FORMULA
Empirical: a(n) = 18*a(n-1) -139*a(n-2) +604*a(n-3) -1627*a(n-4) +2818*a(n-5) -3141*a(n-6) +2176*a(n-7) -852*a(n-8) +144*a(n-9).
Empirical g.f.: x*(90 - 1055*x + 5692*x^2 - 17829*x^3 + 34700*x^4 - 42404*x^5 + 31552*x^6 - 13056*x^7 + 2304*x^8) / ((1 - x)^4*(1 - 2*x)^2*(1 - 3*x)^2*(1 - 4*x)). - Colin Barker, Jun 04 2018
EXAMPLE
Some solutions for n=4:
..0..2....1..3....1..1....2..1....1..2....3..1....0..3....1..0....0..1....2..0
..1..3....1..3....1..1....2..3....1..3....1..3....0..3....0..1....3..2....0..2
..2..2....3..1....2..2....2..3....1..3....1..3....1..2....0..3....2..3....1..1
..1..3....1..3....2..3....2..3....3..2....1..3....1..3....1..2....3..2....3..1
..2..2....1..3....2..3....2..3....2..3....3..2....3..3....1..2....2..3....1..3
CROSSREFS
Cf. A203787.
Sequence in context: A156738 A211446 A203787 * A295982 A367093 A065949
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 05 2012
STATUS
approved