login
A126779
Number of functions f:{1,2,...,n}->{1,2,...,n} such that Im(f) contains 3 fixed elements.
3
6, 60, 750, 11340, 201726, 4131036, 95750430, 2478397020, 70864914846, 2218385781612, 75463626886830, 2771883228523500, 109340261175108606, 4609962410815813308, 206883575626027168830, 9846362287666897852860
OFFSET
3,1
FORMULA
a(n) = n^n-3*(n-1)^n+3*(n-2)^n-(n-3)^n, (n=3,4,...)
E.g.f.: (W(-x)^3 + 3*x*W(-x)^2 + 3*x^2*W(-x) + x^3)/(W(-x)^3*(1 + W(-x))) where W is the Lambert W function. - Robert Israel, Jan 10 2019
EXAMPLE
a(7)=201726
MAPLE
a:=n->n^n-3*(n-1)^n+3*(n-2)^n-(n-3)^n;
MATHEMATICA
Drop[Table[Sum[(-1)^k Binomial[3, k] (n-k)^n, {k, 0, 3}], {n, 1, 20}], 2] (* Geoffrey Critzer, Dec 23 2012 *)
CROSSREFS
Sequence in context: A112117 A065944 A357771 * A218441 A120973 A259606
KEYWORD
nonn
AUTHOR
Aleksandar M. Janjic and Milan Janjic, Feb 18 2007
STATUS
approved