

A086201


Decimal expansion of 1/(2*Pi).


29



1, 5, 9, 1, 5, 4, 9, 4, 3, 0, 9, 1, 8, 9, 5, 3, 3, 5, 7, 6, 8, 8, 8, 3, 7, 6, 3, 3, 7, 2, 5, 1, 4, 3, 6, 2, 0, 3, 4, 4, 5, 9, 6, 4, 5, 7, 4, 0, 4, 5, 6, 4, 4, 8, 7, 4, 7, 6, 6, 7, 3, 4, 4, 0, 5, 8, 8, 9, 6, 7, 9, 7, 6, 3, 4, 2, 2, 6, 5, 3, 5, 0, 9, 0, 1, 1, 3, 8, 0, 2, 7, 6, 6, 2, 5, 3, 0, 8, 5, 9, 5, 6
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

If a single hump of cycloid, with arc length 8*radius (generating circle), is inside a rectangle with width=2*radius and length=2*Pi*radius, then the radius must be 1/(2*Pi) (this sequence) to have (2/Pi), A060294, as semi arc of cycloid (arc = 4/Pi = A088538) and the rectangle... length=1, width=1/Pi. I suppose that in 3D geometry, gliding along a cycloid, in all directions around, from a point A at the height of 1/Pi, gives Pi*point B.  Eric Desbiaux, Dec 21 2008
Radius of circle having circumference 1.  Clark Kimberling, Jan 06 2014


LINKS

Table of n, a(n) for n=0..101.
Eric Weisstein's World of Mathematics, Plouffe's Constants
Eric Weisstein's World of Mathematics, Pythagorean Triple


EXAMPLE

0.15915...


MATHEMATICA

RealDigits[N[1/(2*Pi), 6! ]][[1]] (* Vladimir Joseph Stephan Orlovsky, Jun 18 2009 *)


CROSSREFS

Sequence in context: A127414 A186192 A231532 * A010490 A021173 A266553
Adjacent sequences: A086198 A086199 A086200 * A086202 A086203 A086204


KEYWORD

nonn,cons


AUTHOR

Eric W. Weisstein, Jul 12 2003


EXTENSIONS

Link corrected by Fred Daniel Kline, Jul 29 2015


STATUS

approved



