login
A231532
Decimal expansion of the real part of Sum_{n=0..inf}(1/c_n), c_0=1, c_n=c_(n-1)*(n+I).
3
1, 5, 9, 1, 5, 4, 7, 8, 1, 4, 7, 3, 2, 8, 5, 1, 9, 5, 7, 3, 3, 6, 7, 7, 9, 8, 8, 2, 0, 6, 4, 9, 9, 8, 2, 7, 6, 2, 4, 6, 0, 5, 9, 2, 6, 7, 4, 7, 8, 6, 8, 0, 0, 9, 2, 5, 4, 5, 3, 5, 3, 2, 5, 7, 0, 7, 6, 3, 8, 0, 1, 6, 3, 3, 1, 5, 2, 7, 1, 6, 6, 4, 8, 8, 3, 7, 0, 3, 2, 6, 8, 6, 9, 6, 8, 5, 9, 6, 3, 4, 5, 4, 8, 8, 9
OFFSET
1,2
COMMENTS
Consider an extension of exp(x) to an intriguing function, expim(x,y), defined by the power series Sum_{n=0..inf}(x^n/c_n), where c_0 = 1, c_n = c_(n-1)*(n+y*I), so that exp(x) = expim(x,0). The current sequence regards the real part of expim(1,1). The decimal expansion of the imaginary part is in A231533 and that of the absolute value in A231534.
LINKS
FORMULA
real(Sum_{n=0..inf}(1/(A231530(n)+A231531(n)*I))).
EXAMPLE
1.59154781473285195733677988...
PROG
(PARI) Expim(x, y)={local (c, k, lastval, val); c = 1.0+0.0*I; lastval = c; k = 1; while (k, c*=x/(k + y*I); val = lastval + c; if (val==lastval, break); lastval = val; k += 1; ); return (val); }
real(Expim(1, 1))
CROSSREFS
Cf. A231533 (imaginary part), A231534 (absolute value), and A231530, A231531 (respectively, the real and imaginary parts of the expansion coefficient's denominators).
Sequence in context: A274418 A127414 A186192 * A086201 A362742 A010490
KEYWORD
nonn,cons
AUTHOR
Stanislav Sykora, Nov 10 2013
STATUS
approved