login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies: A(x/A(x)) = G(x) where G(x) = 1 + x*G(x)^2 is the g.f. of A000108 (Catalan numbers).
5

%I #11 Feb 04 2018 03:19:56

%S 1,1,3,13,70,440,3116,24274,204407,1836339,17425275,173329307,

%T 1796783304,19323703019,214843877103,2462522274426,29032815570544,

%U 351447240945518,4361579736404011,55424256247911490,720399315622779670,9569215299494074698,129799982362958621827

%N G.f. satisfies: A(x/A(x)) = G(x) where G(x) = 1 + x*G(x)^2 is the g.f. of A000108 (Catalan numbers).

%H Paul D. Hanna, <a href="/A154677/b154677.txt">Table of n, a(n) for n = 0..200</a>

%F G.f. satisfies: A( (x-x^2)/A(x-x^2) ) = 1/(1-x).

%F G.f. satisfies: A( (x/(1+x)^2)/A(x/(1+x)^2) ) = 1 + x.

%F G.f. satisfies: A(x) = 1 + A(x)^2*Series_Reversion(x/A(x)). - _Paul D. Hanna_, Dec 06 2009

%e G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 70*x^4 + 440*x^5 + ... where

%e A(x/A(x)) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + ...

%e x/A(x) = x - x^2 - 2*x^3 - 8*x^4 - 43*x^5 - 277*x^6 - 2026*x^7 - ...

%o (PARI) {a(n)=local(A=1+x,F=sum(k=0,n,binomial(2*k+1,k)/(2*k+1)*x^k)+x*O(x^n)); for(i=0,n,A=subst(F,x,serreverse(x/(A+x*O(x^n)))));polcoeff(A,n)}

%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=1+A^2*serreverse(x/(A+x*O(x^n))));polcoeff(A,n)} \\ _Paul D. Hanna_, Dec 06 2009

%Y Cf. A000108.

%Y Cf. variants: A168448, A168478. - _Paul D. Hanna_, Dec 06 2009

%K nonn

%O 0,3

%A _Paul D. Hanna_, Jan 14 2009