Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Jul 05 2021 19:46:58
%S 23,43,53,73,83,101,127,131,139,151,157,179,181,229,281,283,293,307,
%T 311,313,349,353,359,389,397,401,409,419,443,449,457,461,463,487,491,
%U 509,521,563,569,571,601,617,631,641,643,653,673,709,739,757,769,787,797,809,827,829,839,857,863,877
%N Primes p1 such that, with p2, p3, p4 the next three primes, p1*p2+p3*p4+p1, p1*p2+p3*p4+p2, p1*p2+p3*p4+p3 and p1*p2+p3*p4+p4 are all composite.
%H Robert Israel, <a href="/A340136/b340136.txt">Table of n, a(n) for n = 1..10000</a>
%e a(3) = 53 is a term because with p1 = 53, p2 = 59, p3 = 61, p4 = 67, we have p1*p2+p3*p4+p1 = 7267, p1*p2+p3*p4+p2 = 7273, p1*p2+p3*p4+p3 = 7275, p1*p2+p3*p4+p4 = 7281, all composite.
%p p2:=2: p3:= 3: p4:= 5: count:= 0: R:= NULL:
%p while count < 100 do
%p p1:= p2; p2:= p3; p3:= p4; p4:= nextprime(p4);
%p w:= p1*p2+p3*p4;
%p if not ormap(t -> isprime(t+w), [p1, p2, p3, p4]) then
%p count:= count+1; R:= R, p1
%p fi
%p od:
%p R;
%t acQ[{a_,b_,c_,d_}]:=AllTrue[a*b+c*d+{a,b,c,d},CompositeQ]; Select[ Partition[ Prime[ Range[200]],4,1],acQ][[All,1]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jul 05 2021 *)
%o (PARI) isA340136(p1) = if(!isprime(p1),0,my(p2=nextprime(1+p1),p3=nextprime(1+p2),p4=nextprime(1+p3),x=((p1*p2)+(p3*p4))); !isprime(x+p1)&&!isprime(x+p2)&&!isprime(x+p3)&&!isprime(x+p4)); \\ _Antti Karttunen_, Dec 29 2020
%Y Cf. A340126.
%K nonn
%O 1,1
%A _J. M. Bergot_ and _Robert Israel_, Dec 29 2020