login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A306083 Expansion of e.g.f. Product_{k>=1} (1 + (exp(x) - 1)^(k^2)). 3
1, 1, 1, 1, 25, 361, 3361, 25201, 166825, 1383481, 25879921, 651816001, 14450460025, 280347467401, 5253918022081, 107822784560401, 2578135250199625, 69030779356572121, 1953531819704493841, 56903093167217522401, 1689294590583626265625 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..420

FORMULA

a(n) = Sum_{k=0..n} Stirling2(n,k) * A033461(k) * k!.

a(n) ~ n! * exp(3 * (Pi/log(2))^(1/3) * ((sqrt(2) - 1) * Zeta(3/2))^(2/3) * n^(1/3) / 4) * ((sqrt(2) - 1) * Zeta(3/2) / Pi)^(1/3) / (2 * sqrt(6) * n^(5/6) * log(2)^(n + 1/6)).

MAPLE

a:=series(mul(1+(exp(x)-1)^(k^2), k=1..100), x=0, 21): seq(n!*coeff(a, x, n), n=0..20); # Paolo P. Lava, Mar 26 2019

MATHEMATICA

nmax = 20; CoefficientList[Series[Product[(1 + (Exp[x] - 1)^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!

CROSSREFS

Cf. A033461, A306082, A306147.

Sequence in context: A022653 A125460 A188487 * A077512 A261972 A197678

Adjacent sequences:  A306080 A306081 A306082 * A306084 A306085 A306086

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, Jun 20 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 08:46 EDT 2021. Contains 348074 sequences. (Running on oeis4.)