OFFSET
0,2
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..400
FORMULA
a(n) = Sum_{k=0..n} Stirling2(n,k) * A156616(k) * k!.
a(n) ~ n! * exp(3 * (7*Zeta(3))^(1/3) * n^(2/3) / (4 * log(2)^(2/3)) + (1 - log(2)) * (7*Zeta(3))^(2/3) * n^(1/3) / (8 * log(2)^(4/3)) - 7*(log(2)^2 + log(2) - 1) * Zeta(3) / (48 * log(2)^2) + 1/12) * (7*Zeta(3))^(7/36) / (A * 2^(13/12) * sqrt(3*Pi) * n^(25/36) * (log(2))^(n + 11/36)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Jun 22 2018
MATHEMATICA
nmax = 20; CoefficientList[Series[Product[((1 + (Exp[x] - 1)^k)/(1 - (Exp[x] - 1)^k))^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jun 20 2018
STATUS
approved