login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306082
Expansion of e.g.f. Product_{k>=1} 1/(1 - (exp(x) - 1)^(k^2)).
3
1, 1, 3, 13, 99, 901, 8763, 92653, 1125939, 16333141, 274594923, 5041348093, 97841114979, 2007694705381, 44043941312283, 1036207737976333, 25969433606691219, 688418684249653621, 19275116061819888843, 571069469474068377373, 17898523203378840958659
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} Stirling2(n,k) * A001156(k) * k!.
a(n) ~ n! * exp(3 * 2^(-5/3) * Zeta(3/2)^(2/3) * (Pi*n/log(2))^(1/3)) * Zeta(3/2)^(2/3) / (2^(13/6) * sqrt(3) * Pi^(7/6) * n^(7/6) * (log(2))^(n - 1/6)).
MAPLE
a:=series(mul(1/(1-(exp(x)-1)^(k^2)), k=1..100), x=0, 21): seq(n!*coeff(a, x, n), n=0..20); # Paolo P. Lava, Mar 26 2019
MATHEMATICA
nmax = 20; CoefficientList[Series[Product[1/(1 - (Exp[x] - 1)^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jun 20 2018
STATUS
approved