login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352300
Expansion of e.g.f. 1/(2 - exp(x) - x^4).
3
1, 1, 3, 13, 99, 781, 7563, 84253, 1103595, 16074589, 260443083, 4630046653, 90017588235, 1894771249021, 42957132108075, 1043136555486493, 27024421701469995, 743851294350730141, 21679544916491784843, 666932347454809048189
OFFSET
0,3
FORMULA
a(n) = n * (n-1) * (n-2) * (n-3) * a(n-4) + Sum_{k=1..n} binomial(n,k) * a(n-k) for n > 3.
MATHEMATICA
m = 19; Range[0, m]! * CoefficientList[Series[1/(2 - Exp[x] - x^4), {x, 0, m}], x] (* Amiram Eldar, Mar 12 2022 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(2-exp(x)-x^4)))
(PARI) b(n, m) = if(n==0, 1, sum(k=1, n, (1+(k==m)*m!)*binomial(n, k)*b(n-k, m)));
a(n) = b(n, 4);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 11 2022
STATUS
approved