The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A352304 Expansion of e.g.f.: 1/(exp(x) - x^4). 4
 1, -1, 1, -1, 25, -241, 1441, -6721, 67201, -1185409, 16652161, -180639361, 2098673281, -37526586241, 785718950017, -14516030954881, 247504017895681, -4832929862019841, 116556246644716801, -2930255897793414913, 69746855593499124481, -1673960044278244020481 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS FORMULA a(n) = n * (n-1) * (n-2) * (n-3) * a(n-4) - Sum_{k=1..n} binomial(n,k) * a(n-k) for n > 3. a(n) ~ n! * (-1)^n / ((1 + LambertW(1/4)) * 2^(2*n + 10) * LambertW(1/4)^(n+4)). - Vaclav Kotesovec, Mar 12 2022 MATHEMATICA m = 21; Range[0, m]! * CoefficientList[Series[1/(Exp[x] - x^4), {x, 0, m}], x] (* Amiram Eldar, Mar 12 2022 *) PROG (PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(exp(x)-x^4))) (PARI) b(n, m) = if(n==0, 1, sum(k=1, n, (-1+(k==m)*m!)*binomial(n, k)*b(n-k, m))); a(n) = b(n, 4); CROSSREFS Cf. A089148, A352302, A352303. Cf. A352300, A352311. Sequence in context: A108178 A278849 A294290 * A107943 A125388 A126546 Adjacent sequences:  A352301 A352302 A352303 * A352305 A352306 A352307 KEYWORD sign AUTHOR Seiichi Manyama, Mar 11 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 18 01:42 EDT 2022. Contains 356204 sequences. (Running on oeis4.)