login
A352304
Expansion of e.g.f. 1/(exp(x) - x^4).
4
1, -1, 1, -1, 25, -241, 1441, -6721, 67201, -1185409, 16652161, -180639361, 2098673281, -37526586241, 785718950017, -14516030954881, 247504017895681, -4832929862019841, 116556246644716801, -2930255897793414913, 69746855593499124481, -1673960044278244020481
OFFSET
0,5
FORMULA
a(n) = n * (n-1) * (n-2) * (n-3) * a(n-4) - Sum_{k=1..n} binomial(n,k) * a(n-k) for n > 3.
a(n) ~ n! * (-1)^n / ((1 + LambertW(1/4)) * 2^(2*n + 10) * LambertW(1/4)^(n+4)). - Vaclav Kotesovec, Mar 12 2022
a(n) = n! * Sum_{k=0..floor(n/4)} (-k-1)^(n-4*k)/(n-4*k)!. - Seiichi Manyama, Aug 21 2024
MATHEMATICA
m = 21; Range[0, m]! * CoefficientList[Series[1/(Exp[x] - x^4), {x, 0, m}], x] (* Amiram Eldar, Mar 12 2022 *)
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(exp(x)-x^4)))
(PARI) b(n, m) = if(n==0, 1, sum(k=1, n, (-1+(k==m)*m!)*binomial(n, k)*b(n-k, m)));
a(n) = b(n, 4);
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Mar 11 2022
STATUS
approved